Polynomial GCD and Factorization Via Approximate Grobner Bases

被引:3
|
作者
Lichtblau, Daniel [1 ]
机构
[1] Wolfram Res, Champaign, IL 61820 USA
关键词
Grobner basis; polynomial gcd; hybrid symbolic-numeric computation;
D O I
10.1109/SYNASC.2010.76
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss computation of approximate Grobner bases at finite precision. We show how this can be used to deduce exact results for polynomial greatest common divisors and factorization. In particular we indicate an algorithm for factoring multivariate polynomials over the closure algebraic of the rationals.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [1] APPROXIMATE POLYNOMIAL GCD
    Elias, Jan
    Zitko, Jan
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 63 - 68
  • [2] Approximate Polynomial GCD by Approximate Syzygies
    Daniel Lichtblau
    Mathematics in Computer Science, 2019, 13 : 517 - 532
  • [3] Approximate Polynomial GCD by Approximate Syzygies
    Lichtblau, Daniel
    MATHEMATICS IN COMPUTER SCIENCE, 2019, 13 (04) : 517 - 532
  • [4] Approximate GCD in Lagrange bases
    Sevyeri, Leili Rafiee
    Corless, Robert M.
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 40 - 47
  • [5] POLYNOMIAL DIVISION AND GROBNER BASES
    Zeada, Samira
    TEACHING OF MATHEMATICS, 2013, 16 (01): : 22 - 28
  • [6] Approximate polynomial GCD over integers
    Nagasaka, Kosaku
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (12) : 1306 - 1317
  • [7] Grobner bases for polynomial systems with parameters
    Montes, Antonio
    Wibmer, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (12) : 1391 - 1425
  • [8] The λ-Grobner bases under polynomial composition
    Liu, Jinwang
    Li, Dongmei
    Chen, Xiaosong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (04) : 610 - 613
  • [9] Properties of entire functions over polynomial rings via Grobner bases
    Apel, J
    Stückrad, J
    Tworzewski, P
    Winiarski, T
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2003, 14 (01) : 1 - 10
  • [10] Polynomial ideals for sandpiles and their Grobner bases
    Cori, R
    Rossin, D
    Salvy, B
    THEORETICAL COMPUTER SCIENCE, 2002, 276 (1-2) : 1 - 15