No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features

被引:7
|
作者
Varga, Domonkos [1 ]
机构
[1] Ronin Inst, Montclair, NJ 07043 USA
关键词
no-reference image quality assessment; quality-aware features; image statistics; NATURAL SCENE STATISTICS; FRAMEWORK;
D O I
10.3390/jimaging8060173
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
With the development of digital imaging techniques, image quality assessment methods are receiving more attention in the literature. Since distortion-free versions of camera images in many practical, everyday applications are not available, the need for effective no-reference image quality assessment algorithms is growing. Therefore, this paper introduces a novel no-reference image quality assessment algorithm for the objective evaluation of authentically distorted images. Specifically, we apply a broad spectrum of local and global feature vectors to characterize the variety of authentic distortions. Among the employed local features, the statistics of popular local feature descriptors, such as SURF, FAST, BRISK, or KAZE, are proposed for NR-IQA; other features are also introduced to boost the performances of local features. The proposed method was compared to 12 other state-of-the-art algorithms on popular and accepted benchmark datasets containing RGB images with authentic distortions (CLIVE, KonIQ-10k, and SPAQ). The introduced algorithm significantly outperforms the state-of-the-art in terms of correlation with human perceptual quality ratings.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] No-Reference Video Quality Assessment Using the Temporal Statistics of Global and Local Image Features
    Varga, Domonkos
    SENSORS, 2022, 22 (24)
  • [32] Learning Sparse Representation for No-Reference Quality Assessment of Multiply Distorted Stereoscopic Images
    Shao, Feng
    Tian, Weijun
    Lin, Weisi
    Jiang, Gangyi
    Dai, Qionghai
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (08) : 1821 - 1836
  • [33] Learning No-Reference Quality Assessment of Multiply and Singly Distorted Images With Big Data
    Zhang, Yi
    Mou, Xuanqin
    Chandler, Damon M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2676 - 2691
  • [34] NO-REFERENCE STEREOSCOPIC IMAGE QUALITY ASSESSMENT BASED ON LOCAL TO GLOBAL FEATURE REGRESSION
    Li, Sumei
    Xue, Jianwei
    Han, Yongtian
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 448 - 453
  • [35] No-reference stereoscopic image quality assessment based on global and local content characteristics
    Shen, Lili
    Chen, Xiongfei
    Pan, Zhaoqing
    Fan, Kefeng
    Li, Fei
    Lei, Jianjun
    NEUROCOMPUTING, 2021, 424 : 132 - 142
  • [36] FUSION OF LOCAL DEGRADATION FEATURES FOR NO-REFERENCE VIDEO QUALITY ASSESSMENT
    Dimitrievski, Martin
    Ivanovski, Zoran
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [37] No-Reference Quality Assessment for Screen Content Images Based on Hybrid Region Features Fusion
    Zheng, Linru
    Shen, Liquan
    Chen, Jianan
    An, Ping
    Luo, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (08) : 2057 - 2070
  • [38] No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization
    Gu, Ke
    Lin, Weisi
    Zhai, Guangtao
    Yang, Xiaokang
    Zhang, Wenjun
    Chen, Chang Wen
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4559 - 4565
  • [39] No-reference quality assessment of deblocked images
    Li, Leida
    Zhou, Yu
    Lin, Weisi
    Wu, Jinjian
    Zhang, Xinfeng
    Chen, Beijing
    NEUROCOMPUTING, 2016, 177 : 572 - 584
  • [40] No-Reference Quality Assessment of Enhanced Images
    Li, Leida
    Shen, Wei
    Gu, Ke
    Wu, Jinjian
    Chen, Beijing
    Zhang, Jianying
    CHINA COMMUNICATIONS, 2016, 13 (09) : 121 - 130