No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features

被引:7
|
作者
Varga, Domonkos [1 ]
机构
[1] Ronin Inst, Montclair, NJ 07043 USA
关键词
no-reference image quality assessment; quality-aware features; image statistics; NATURAL SCENE STATISTICS; FRAMEWORK;
D O I
10.3390/jimaging8060173
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
With the development of digital imaging techniques, image quality assessment methods are receiving more attention in the literature. Since distortion-free versions of camera images in many practical, everyday applications are not available, the need for effective no-reference image quality assessment algorithms is growing. Therefore, this paper introduces a novel no-reference image quality assessment algorithm for the objective evaluation of authentically distorted images. Specifically, we apply a broad spectrum of local and global feature vectors to characterize the variety of authentic distortions. Among the employed local features, the statistics of popular local feature descriptors, such as SURF, FAST, BRISK, or KAZE, are proposed for NR-IQA; other features are also introduced to boost the performances of local features. The proposed method was compared to 12 other state-of-the-art algorithms on popular and accepted benchmark datasets containing RGB images with authentic distortions (CLIVE, KonIQ-10k, and SPAQ). The introduced algorithm significantly outperforms the state-of-the-art in terms of correlation with human perceptual quality ratings.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] No-reference image quality assessment of authentically distorted images with global and local statistics
    Milosz Rajchel
    Mariusz Oszust
    Signal, Image and Video Processing, 2021, 15 : 83 - 91
  • [2] No-reference image quality assessment of authentically distorted images with global and local statistics
    Rajchel, Milosz
    Oszust, Mariusz
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 83 - 91
  • [3] No Reference Opinion Unaware Quality Assessment of Authentically Distorted Images
    Babu, Nithin C.
    Kannan, Vignesh
    Soundararajan, Rajiv
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2458 - 2467
  • [4] Feature Maps-Driven No-Reference Image Quality Prediction of Authentically Distorted Images
    Ghadiyaram, Deepti
    Bovik, Alan C.
    HUMAN VISION AND ELECTRONIC IMAGING XX, 2015, 9394
  • [5] No-Reference Quality Assessment for Realistic Distorted Images by Color Moment and Texture Features
    Zhang, Ziliang
    Fang, Yuming
    Yan, Jiebin
    Du, Rengang
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 342 - 347
  • [6] No-Reference Quality Assessment for Contrast-Distorted Images
    Liu, Yutao
    Li, Xiu
    IEEE ACCESS, 2020, 8 : 84105 - 84115
  • [7] No-Reference Image Quality Assessment for Contrast Distorted Images
    Zhu, Yiming
    Chen, Xianzhi
    Dai, Shengkui
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 241 - 252
  • [8] No-reference Quality Assessment of Contrast-Distorted Images
    Xu, Min
    Wang, Zhiming
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 362 - 367
  • [9] No-Reference Quality Assessment for Multiply Distorted Images based on Deep Learning
    Sang, Qingbing
    Wu, Lixiu
    Li, Chaofeng
    Wu, Xiaojun
    2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017,
  • [10] NO-REFERENCE QUALITY ASSESSMENT OF NIGHT-TIME IMAGES VIA THE ANALYSIS OF LOCAL AND GLOBAL FEATURES
    Song, Chunying
    Hou, Chunping
    Yue, Guanghui
    Wang, Zhipeng
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,