Decoding Reed-Muller Codes over Product Sets

被引:0
作者
Kim, John Y. [1 ]
Kopparty, Swastik [2 ,3 ]
机构
[1] Virtu Financial, Austin, TX 78746 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
基金
美国国家科学基金会;
关键词
error-correcting codes; Reed-Muller codes; algebraic algorithms; Schwartz-Zippel lemma; SOLOMON CODES;
D O I
10.4086/toc.2017.v011a021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a polynomial-time algorithm to decode multivariate polynomial codes of degree d up to half their minimum distance, when the evaluation points are an arbitrary product set S-m, for every d < vertical bar S vertical bar. Previously known algorithms could achieve this only if the set S had some very special algebraic structure, or if the degree d was significantly smaller than vertical bar S vertical bar. We also give a near-linear-time randomized algorithm, based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d < (1- epsilon) vertical bar S vertical bar for constant epsilon > 0. Our result gives an m-dimensional generalization of the well-known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Extractors from Reed-Muller codes
    Ta-Shma, Amnon
    Zuckerman, David
    Safra, Shmuel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (05) : 786 - 812
  • [32] Quaternary Quantum Reed-Muller Codes
    Yuan, Li
    2016 3RD INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2016, : 1170 - 1174
  • [33] Reed-Muller Codes: Theory and Algorithms
    Abbe, Emmanuel
    Shpilka, Amir
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3251 - 3277
  • [34] Construction of Additive Reed-Muller Codes
    Pujol, J.
    Rifa, J.
    Ronquillo, L.
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 223 - 226
  • [35] On the stopping redundancy of Reed-Muller codes
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4867 - 4879
  • [36] The Fractality of Polar and Reed-Muller Codes
    Geiger, Bernhard C.
    ENTROPY, 2018, 20 (01):
  • [37] Simple MAP decoding of first-order Reed-Muller and hamming codes
    Ashikhmin, A
    Litsyn, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1812 - 1818
  • [38] Iterative Hard-Decision Decoding Algorithms for Binary Reed-Muller Codes
    Ni, Yong-Ting
    Nguyen, Duc Nhat
    Liao, Feng-Kai
    Kao, Tzu-Chieh
    Chen, Chao-Yu
    IEEE ACCESS, 2022, 10 : 59373 - 59382
  • [39] A Fourier-analytic approach to Reed-Muller decoding
    Gopalan, Parikshit
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 685 - 694
  • [40] Modified majority logic decoding of Reed-Muller codes using factor graphs
    Yang, Ting-Ya
    Chen, Houshou
    IET COMMUNICATIONS, 2018, 12 (07) : 759 - 764