Decoding Reed-Muller Codes over Product Sets

被引:0
|
作者
Kim, John Y. [1 ]
Kopparty, Swastik [2 ,3 ]
机构
[1] Virtu Financial, Austin, TX 78746 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
基金
美国国家科学基金会;
关键词
error-correcting codes; Reed-Muller codes; algebraic algorithms; Schwartz-Zippel lemma; SOLOMON CODES;
D O I
10.4086/toc.2017.v011a021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a polynomial-time algorithm to decode multivariate polynomial codes of degree d up to half their minimum distance, when the evaluation points are an arbitrary product set S-m, for every d < vertical bar S vertical bar. Previously known algorithms could achieve this only if the set S had some very special algebraic structure, or if the degree d was significantly smaller than vertical bar S vertical bar. We also give a near-linear-time randomized algorithm, based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d < (1- epsilon) vertical bar S vertical bar for constant epsilon > 0. Our result gives an m-dimensional generalization of the well-known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Partial permutation decoding for the first-order Reed-Muller codes
    Seneviratne, P.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 1967 - 1970
  • [22] Decoding Reed-Muller and Polar Codes by Successive Factor Graph Permutations
    Hashemi, Seyyed Ali
    Doan, Nghia
    Mondelli, Marco
    Gross, Warren J.
    PROCEEDINGS OF 2018 IEEE 10TH INTERNATIONAL SYMPOSIUM ON TURBO CODES & ITERATIVE INFORMATION PROCESSING (ISTC), 2018,
  • [23] Permutation decoding of first-order Generalized Reed-Muller codes
    Bernal, Jose Joaquin
    Simon, Juan Jacobo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [24] ON THE BIAS OF REED-MULLER CODES OVER ODD PRIME FIELDS
    Beame, Paul
    Gharan, Shayan Oveis
    Yang, Xin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1232 - 1247
  • [25] The Treewidth of MDS and Reed-Muller Codes
    Kashyap, Navin
    Thangaraj, Andrew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4837 - 4847
  • [26] Holes in Generalized Reed-Muller Codes
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2583 - 2586
  • [27] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 488 - 497
  • [28] Hulls of projective Reed-Muller codes
    Kaplan, Nathan
    Kim, Jon-Lark
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (03) : 683 - 699
  • [29] Spherically Punctured Reed-Muller Codes
    Dumer, Ilya
    Kapralova, Olga
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (05) : 2773 - 2780
  • [30] Minimal codewords in Reed-Muller codes
    Schillewaert, J.
    Storme, L.
    Thas, J. A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 273 - 286