Convergence properties of the Newton-Raphson method for nonlinear problems

被引:25
作者
Janicke, L [1 ]
Kost, A [1 ]
机构
[1] Brandenburg Tech Univ Cottbus, Lehrstuhl Allgemeine Elektrotech, D-03013 Cottbus, Germany
关键词
convergence of numerical methods; Newton-Raphson method; magnetostatics; nonlinear equations; nonlinear magnetics;
D O I
10.1109/20.717577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to solve the nonlinear equation system arising when solving magnetic fields with the finite element method, very often the Newton-Raphson method is applied. Sometimes it is advantageous or necessary to apply relaxation factors in order to improve the convergence. In this paper reasons and workarounds for the convergence problem are discussed.
引用
收藏
页码:2505 / 2508
页数:4
相关论文
共 7 条
[1]   NUMERICAL PROCEDURES FOR THE SOLUTION OF NONLINEAR ELECTROMAGNETIC PROBLEMS [J].
ALBANESE, R ;
RUBINACCI, G .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) :1228-1231
[2]   A VARIABLE LOCAL RELAXATION TECHNIQUE IN NONLINEAR PROBLEMS [J].
BASTOS, JPA ;
IDA, N ;
MESQUITA, RC .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) :1733-1736
[3]   METHOD FOR DETERMINING RELAXATION FACTOR FOR MODIFIED NEWTON-RAPHSON METHOD [J].
FUJIWARA, K ;
NAKATA, T ;
OKAMOTO, N ;
MURAMATSU, K .
IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (02) :1962-1965
[4]   Numerical modeling for anisotropic magnetic media including saturation effects [J].
Janicke, L ;
Kost, A ;
Merte, R .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1788-1791
[5]   ANALYSIS OF CONVERGENCE IN NONLINEAR MAGNETOSTATIC FINITE-ELEMENTS PROBLEMS [J].
NEAGOE, C ;
OSSART, F .
IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (05) :2865-2868
[6]   CHOOSING THE RELAXATION PARAMETER FOR THE SOLUTION OF NONLINEAR MAGNETIC-FIELD PROBLEMS BY THE NEWTON-RAPHSON METHOD [J].
ODWYER, J ;
ODONNELL, T .
IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) :1484-1487
[7]   NUMERICAL-ANALYSIS OF 3D MAGNETOSTATIC FIELDS [J].
PREIS, K ;
BARDI, I ;
BIRO, O ;
MAGELE, C ;
RENHART, W ;
RICHTER, KR ;
VRISK, G .
IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (05) :3798-3803