FULLY DYNAMIC MAXIMAL MATCHING IN O(log n) UPDATE TIME

被引:31
作者
Baswana, Surender [1 ]
Gupta, Manoj [2 ]
Sen, Sandeep [2 ]
机构
[1] IIT, Dept CSE, Kanpur, Uttar Pradesh, India
[2] IIT, Dept CSE, Delhi, India
关键词
matching; dynamic graph algorithm; ALGORITHMS; PATHS;
D O I
10.1137/130914140
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our algorithm is randomized and it takes expected amortized O(log n) time for each edge update, where n is the number of vertices in the graph. While there exists a trivial O(n) time algorithm for each edge update, the previous best known result for this problem is due to Ivkovic and Lloyd [Lecture Notes in Comput. Sci. 790, Springer-Verlag, London, 1994, pp. 99-111]. For a graph with n vertices and m edges, they gave an O((n + m)(0.7072)) update time algorithm which is sublinear only for a sparse graph. For the related problem of maximum matching, Onak and Rubinfeld [Proceedings of STOC'10, Cambridge, MA, 2010, pp. 457-464] designed a randomized algorithm that achieves expected amortized O(log(2) n) time for each update for maintaining a c-approximate maximum matching for some unspecified large constant c. In contrast, we can maintain a factor 2 approximate maximum matching in expected amortized O(log n) time per update as a direct corollary of the maximal matching scheme. This in turn also implies a 2-approximate vertex cover maintenance scheme that takes expected amortized O(log n) time per update.
引用
收藏
页码:88 / 113
页数:26
相关论文
共 50 条
[31]   Denser packings obtained in O(n log log n) tTime [J].
Pisinger, David .
INFORMS JOURNAL ON COMPUTING, 2007, 19 (03) :395-405
[32]   An O(n) time algorithm for maximum matching in P-4-tidy graphs [J].
Fouquet, JL ;
Parfenoff, I ;
Thuillier, H .
INFORMATION PROCESSING LETTERS, 1997, 62 (06) :281-287
[33]   O(n) Time Algorithms for Dominating Induced Matching Problems [J].
Lin, Min Chih ;
Mizrahi, Michel J. ;
Szwarcfiter, Jayme L. .
LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 :399-408
[34]   O(√log n) APPROXIMATION TO SPARSEST CUT IN (O)over-bar(n2) TIME [J].
Arora, Sanjeev ;
Hazan, Elad ;
Kale, Satyen .
SIAM JOURNAL ON COMPUTING, 2010, 39 (05) :1748-1771
[35]   The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time [J].
Firoz, Jesun Sahariar ;
Hasan, Masud ;
Khan, Ashik Zinnat ;
Rahman, M. Sohel .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (08) :1007-1011
[36]   Fully-Dynamic Minimum Spanning Forest with Improved Worst-Case Update Time [J].
Wulff-Nilsen, Christian .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :1130-1143
[37]   Fully-dynamic Weighted Matching Approximation in Practice [J].
Angriman, Eugenio ;
Meyerhenke, Henning ;
Schulz, Christian ;
Ucar, Bora .
PROCEEDINGS OF THE 2021 SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA21, 2021, :32-44
[38]   Dynamic Spanning Forest with Worst- Case Update Time: Adaptive, Las Vegas, and O(n1/2-ε)-Time [J].
Nanongkai, Danupon ;
Saranurak, Thatchaphol .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :1122-1129
[39]   Maximum Cardinality f-Matching in Time O(n2/3m) [J].
Gabow, Harold n. .
ACM TRANSACTIONS ON ALGORITHMS, 2025, 21 (01)
[40]   An in-place sorting with O (n log n) comparisons and O(n) moves [J].
Franceschini, G ;
Geffert, V .
JOURNAL OF THE ACM, 2005, 52 (04) :515-537