FULLY DYNAMIC MAXIMAL MATCHING IN O(log n) UPDATE TIME

被引:31
作者
Baswana, Surender [1 ]
Gupta, Manoj [2 ]
Sen, Sandeep [2 ]
机构
[1] IIT, Dept CSE, Kanpur, Uttar Pradesh, India
[2] IIT, Dept CSE, Delhi, India
关键词
matching; dynamic graph algorithm; ALGORITHMS; PATHS;
D O I
10.1137/130914140
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our algorithm is randomized and it takes expected amortized O(log n) time for each edge update, where n is the number of vertices in the graph. While there exists a trivial O(n) time algorithm for each edge update, the previous best known result for this problem is due to Ivkovic and Lloyd [Lecture Notes in Comput. Sci. 790, Springer-Verlag, London, 1994, pp. 99-111]. For a graph with n vertices and m edges, they gave an O((n + m)(0.7072)) update time algorithm which is sublinear only for a sparse graph. For the related problem of maximum matching, Onak and Rubinfeld [Proceedings of STOC'10, Cambridge, MA, 2010, pp. 457-464] designed a randomized algorithm that achieves expected amortized O(log(2) n) time for each update for maintaining a c-approximate maximum matching for some unspecified large constant c. In contrast, we can maintain a factor 2 approximate maximum matching in expected amortized O(log n) time per update as a direct corollary of the maximal matching scheme. This in turn also implies a 2-approximate vertex cover maintenance scheme that takes expected amortized O(log n) time per update.
引用
收藏
页码:88 / 113
页数:26
相关论文
共 50 条
  • [31] Denser packings obtained in O(n log log n) tTime
    Pisinger, David
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (03) : 395 - 405
  • [32] An O(n) time algorithm for maximum matching in P-4-tidy graphs
    Fouquet, JL
    Parfenoff, I
    Thuillier, H
    INFORMATION PROCESSING LETTERS, 1997, 62 (06) : 281 - 287
  • [33] O(n) Time Algorithms for Dominating Induced Matching Problems
    Lin, Min Chih
    Mizrahi, Michel J.
    Szwarcfiter, Jayme L.
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 399 - 408
  • [34] O(√log n) APPROXIMATION TO SPARSEST CUT IN (O)over-bar(n2) TIME
    Arora, Sanjeev
    Hazan, Elad
    Kale, Satyen
    SIAM JOURNAL ON COMPUTING, 2010, 39 (05) : 1748 - 1771
  • [35] The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time
    Firoz, Jesun Sahariar
    Hasan, Masud
    Khan, Ashik Zinnat
    Rahman, M. Sohel
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (08) : 1007 - 1011
  • [36] Fully-Dynamic Minimum Spanning Forest with Improved Worst-Case Update Time
    Wulff-Nilsen, Christian
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 1130 - 1143
  • [37] Fully-dynamic Weighted Matching Approximation in Practice
    Angriman, Eugenio
    Meyerhenke, Henning
    Schulz, Christian
    Ucar, Bora
    PROCEEDINGS OF THE 2021 SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA21, 2021, : 32 - 44
  • [38] Dynamic Spanning Forest with Worst- Case Update Time: Adaptive, Las Vegas, and O(n1/2-ε)-Time
    Nanongkai, Danupon
    Saranurak, Thatchaphol
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 1122 - 1129
  • [39] Maximum Cardinality f-Matching in Time O(n2/3m)
    Gabow, Harold n.
    ACM TRANSACTIONS ON ALGORITHMS, 2025, 21 (01)
  • [40] An in-place sorting with O (n log n) comparisons and O(n) moves
    Franceschini, G
    Geffert, V
    JOURNAL OF THE ACM, 2005, 52 (04) : 515 - 537