FULLY DYNAMIC MAXIMAL MATCHING IN O(log n) UPDATE TIME

被引:31
作者
Baswana, Surender [1 ]
Gupta, Manoj [2 ]
Sen, Sandeep [2 ]
机构
[1] IIT, Dept CSE, Kanpur, Uttar Pradesh, India
[2] IIT, Dept CSE, Delhi, India
关键词
matching; dynamic graph algorithm; ALGORITHMS; PATHS;
D O I
10.1137/130914140
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our algorithm is randomized and it takes expected amortized O(log n) time for each edge update, where n is the number of vertices in the graph. While there exists a trivial O(n) time algorithm for each edge update, the previous best known result for this problem is due to Ivkovic and Lloyd [Lecture Notes in Comput. Sci. 790, Springer-Verlag, London, 1994, pp. 99-111]. For a graph with n vertices and m edges, they gave an O((n + m)(0.7072)) update time algorithm which is sublinear only for a sparse graph. For the related problem of maximum matching, Onak and Rubinfeld [Proceedings of STOC'10, Cambridge, MA, 2010, pp. 457-464] designed a randomized algorithm that achieves expected amortized O(log(2) n) time for each update for maintaining a c-approximate maximum matching for some unspecified large constant c. In contrast, we can maintain a factor 2 approximate maximum matching in expected amortized O(log n) time per update as a direct corollary of the maximal matching scheme. This in turn also implies a 2-approximate vertex cover maintenance scheme that takes expected amortized O(log n) time per update.
引用
收藏
页码:88 / 113
页数:26
相关论文
共 50 条
[21]   An O(n3(log log n/log n)5/4) Time Algorithm for All Pairs Shortest Path [J].
Yijie Han .
Algorithmica, 2008, 51 :428-434
[22]   COMPUTING THE GIRTH OF A PLANAR GRAPH IN O(n log n) TIME [J].
Weimann, Oren ;
Yuster, Raphael .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) :609-616
[23]   Computing the Girth of a Planar Graph in O (n log n) Time [J].
Weimann, Oren ;
Yuster, Raphael .
AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 :764-+
[24]   An O(n log n)-time algorithm for the restriction scaffold assignment problem [J].
Colannino, Justin ;
Damian, Mirela ;
Hurtado, Ferran ;
Iacono, John ;
Meijer, Henk ;
Ramaswami, Suneeta ;
Toussaint, Godfried .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (04) :979-989
[25]   Polynomial Multiplication over Finite Fields in Time O(n log n) [J].
Harvey, David ;
van der Hoeven, Joris .
JOURNAL OF THE ACM, 2022, 69 (02)
[26]   Dynamic Bridge-Finding in (O)over-tilde(log2 n) Amortized Time [J].
Holm, Jacob ;
Rotenberg, Eva ;
Thorup, Mikkel .
SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, :35-52
[27]   Finding a Maximum Matching in a Sparse Random Graph in O(n) Expected Time [J].
Chebolu, Prasad ;
Frieze, Alan ;
Melsted, Pall .
JOURNAL OF THE ACM, 2010, 57 (04)
[28]   Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time [J].
Bhattacharya, Sayan ;
Kiss, Peter ;
Urak, Thatchaphol saran ;
Wajc, David .
JOURNAL OF THE ACM, 2024, 71 (05)
[29]   Minimum Cut in O(m log2 n) Time [J].
Gawrychowski, Pawel ;
Mozes, Shay ;
Weimann, Oren .
THEORY OF COMPUTING SYSTEMS, 2024, 68 (04) :814-834
[30]   AN O (n log n)-TIME ALGORITHM FOR THE k-CENTER PROBLEM IN TREES [J].
Wang, Haitao ;
Zhang, Jingru .
SIAM JOURNAL ON COMPUTING, 2021, 50 (02) :602-635