Short intervals asymptotic formulae for binary problems with primes and powers, II: density 1

被引:12
|
作者
Languasco, Alessandro [1 ]
Zaccagnini, Alessandro [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 181卷 / 02期
关键词
Waring-Goldbach problem; Hardy-Littlewood method;
D O I
10.1007/s00605-015-0871-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that suitable asymptotic formulae in short intervals hold for the problems of representing an integer as a sum of a prime square and a square, or a prime square. Such results are obtained both assuming the Riemann Hypothesis and in the unconditional case.
引用
收藏
页码:419 / 435
页数:17
相关论文
共 5 条
  • [1] Short intervals asymptotic formulae for binary problems with primes and powers, II: density 1
    Alessandro Languasco
    Alessandro Zaccagnini
    Monatshefte für Mathematik, 2016, 181 : 419 - 435
  • [2] Short intervals asymptotic formulae for binary problems with primes and powers, I: density 3/2
    Languasco, Alessandro
    Zaccagnini, Alessandro
    RAMANUJAN JOURNAL, 2017, 42 (02) : 371 - 383
  • [3] SHORT INTERVALS ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS WITH PRIME POWERS, II
    Languasco, Alessandro
    Zaccagnini, Alessandro
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (03) : 351 - 370
  • [4] Short intervals asymptotic formulae for binary problems with prime powers
    Languasco, Alessandro
    Zaccagnini, Alessandro
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 609 - 635
  • [5] Additive representation in short intervals, II: sums of two like powers
    Bruedern, Joerg
    Wooley, Trevor D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 179 - 196