Intrascanner and Interscanner Variability of Magnetization Transfer-Sensitized Balanced Steady-State Free Precession Imaging

被引:10
作者
Gloor, M. [1 ]
Scheffler, K. [1 ]
Bieri, O. [1 ]
机构
[1] Univ Basel Hosp, Dept Med Radiol, Div Radiol Phys, CH-4031 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
magnetization transfer imaging; magnetization transfer ratio; MTR; steady-state free precession; balanced SSFP; TRANSFER RATIO; WHITE-MATTER; MULTIPLE-SCLEROSIS; TISSUE; RELAXATION; SEQUENCE; SSFP; T-1;
D O I
10.1002/mrm.22694
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recently, a new and fast three-dimensional imaging technique for magnetization transfer ratio (MTR) imaging has been proposed based on a balanced steady-state free precession protocol with modified radiofrequency pulses. In this study, optimal balanced steady-state free precession MTR protocol parameters were derived for maximum stability and reproducibility. Variability between scans was assessed within white and gray matter for nine healthy volunteers using two different 1.5 T clinical systems at six different sites. Intrascanner and interscanner MTR measurements were well reproducible (coefficient of variation: c(v) < 0.012 and c(v) < 0.015, respectively) and results indicate a high stability across sites (c(v) < 0.017) for optimal flip angle settings. This study demonstrates that balanced steady-state free precession MTR not only benefits from short acquisition time and high signal-to-noise ratio but also offers excellent reproducibility and low variability, and it is thus proposed for clinical MTR scans at individual sites as well as for multicenter studies. Magn Reson Med 65:1113-1118, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1113 / 1118
页数:6
相关论文
共 50 条
  • [21] Starter sequence for steady-state free precession imaging
    Foxall, DL
    MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (04) : 919 - 929
  • [22] Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession
    Faust, Jonas Frederik
    Speier, Peter
    Krafft, Axel Joachim
    Patil, Sunil
    Seethamraju, Ravi Teja
    Ladd, Mark E.
    Maier, Florian
    MAGNETIC RESONANCE IN MEDICINE, 2025, : 59 - 72
  • [23] Revisiting the Potential of Alternating Repetition Time Balanced Steady-State Free Precession Imaging of the Abdomen at 3 T
    Gurney-Champion, Oliver J.
    Nederveen, Aart J.
    Klaassen, Remy
    Engelbrecht, Marc R.
    Bel, Arjan
    van Laarhoven, Hanneke W. M.
    Stoker, Jaap
    Goncalves, Sonia I.
    INVESTIGATIVE RADIOLOGY, 2016, 51 (09) : 560 - 568
  • [24] Enhanced spectral shaping in steady-state free precession imaging
    Cukur, Tolga
    Bangerter, Neal K.
    Nishimura, Dwight G.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1216 - 1223
  • [25] Frequency-modulated steady-state free precession imaging
    Foxall, DL
    MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (03) : 502 - 508
  • [26] Profile-encoding reconstruction for multiple-acquisition balanced steady-state free precession imaging
    Ilicak, Efe
    Senel, Lutfi Kerem
    Biyik, Erdem
    Cukur, Tolga
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (04) : 1316 - 1329
  • [27] High sensitivity MR acoustic radiation force imaging using transition band balanced steady-state free precession
    Zheng, Yuan
    Marx, Michael
    Miller, G. Wilson
    Pauly, Kim Butts
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (03) : 1532 - 1537
  • [28] Morphing steady-state free precession
    Bieri, O.
    Patil, S.
    Quick, H. H.
    Scheffler, K.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1242 - 1248
  • [29] THE DIFFUSION SENSITIVITY OF FAST STEADY-STATE FREE PRECESSION IMAGING
    BUXTON, RB
    MAGNETIC RESONANCE IN MEDICINE, 1993, 29 (02) : 235 - 243
  • [30] Balanced Steady State Free Precession fMRI
    Lee, Jin Hyung
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2010, 20 (01) : 23 - 30