Intrascanner and Interscanner Variability of Magnetization Transfer-Sensitized Balanced Steady-State Free Precession Imaging

被引:10
|
作者
Gloor, M. [1 ]
Scheffler, K. [1 ]
Bieri, O. [1 ]
机构
[1] Univ Basel Hosp, Dept Med Radiol, Div Radiol Phys, CH-4031 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
magnetization transfer imaging; magnetization transfer ratio; MTR; steady-state free precession; balanced SSFP; TRANSFER RATIO; WHITE-MATTER; MULTIPLE-SCLEROSIS; TISSUE; RELAXATION; SEQUENCE; SSFP; T-1;
D O I
10.1002/mrm.22694
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recently, a new and fast three-dimensional imaging technique for magnetization transfer ratio (MTR) imaging has been proposed based on a balanced steady-state free precession protocol with modified radiofrequency pulses. In this study, optimal balanced steady-state free precession MTR protocol parameters were derived for maximum stability and reproducibility. Variability between scans was assessed within white and gray matter for nine healthy volunteers using two different 1.5 T clinical systems at six different sites. Intrascanner and interscanner MTR measurements were well reproducible (coefficient of variation: c(v) < 0.012 and c(v) < 0.015, respectively) and results indicate a high stability across sites (c(v) < 0.017) for optimal flip angle settings. This study demonstrates that balanced steady-state free precession MTR not only benefits from short acquisition time and high signal-to-noise ratio but also offers excellent reproducibility and low variability, and it is thus proposed for clinical MTR scans at individual sites as well as for multicenter studies. Magn Reson Med 65:1113-1118, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1113 / 1118
页数:6
相关论文
共 50 条
  • [21] Improved dark blood imaging of the heart using radial balanced steady-state free precession
    Robert R. Edelman
    Marcos Botelho
    Amit Pursnani
    Shivraman Giri
    Ioannis Koktzoglou
    Journal of Cardiovascular Magnetic Resonance, 18
  • [22] Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession
    Faust, Jonas Frederik
    Speier, Peter
    Krafft, Axel Joachim
    Patil, Sunil
    Seethamraju, Ravi Teja
    Ladd, Mark E.
    Maier, Florian
    MAGNETIC RESONANCE IN MEDICINE, 2025,
  • [23] Practical Applications of Balanced Steady-State Free-Precession (bSSFP) Imaging in the Abdomen and Pelvis
    Schieda, Nicola
    Isupov, Inga
    Chung, Andrew
    Coffey, Niamh
    Avruch, Leonard
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (01) : 11 - 20
  • [24] Comparison between balanced steady-state free precession and standard spoiled gradient echo magnetization transfer ratio imaging in multiple sclerosis: methodical and clinical considerations
    Amann, Michael
    Sprenger, Till
    Naegelin, Yvonne
    Reinhardt, Julia
    Kuster, Pascal
    Hirsch, Jochen G.
    Kappos, Ludwig
    Radue, Ernst-Wilhelm
    Stippich, Christoph
    Bieri, Oliver
    NEUROIMAGE, 2015, 108 : 87 - 94
  • [25] Concomitant gradient field effects in balanced steady-state free precession
    Sica, Christopher T.
    Meyer, Craig H.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (04) : 721 - 730
  • [26] CMR Imaging of Edema in Myocardial Infarction Using Cine Balanced Steady-State Free Precession
    Kumar, Andreas
    Beohar, Nirat
    Arumana, Jain Mangalathu
    Larose, Eric
    Li, Debiao
    Friedrich, Matthias G.
    Dharmakumar, Rohan
    JACC-CARDIOVASCULAR IMAGING, 2011, 4 (12) : 1265 - 1273
  • [27] Motion resilience of the balanced steady-state free precession geometric solution
    Hoff, Michael N.
    Xiang, Qing-San
    Cross, Nathan M.
    Hippe, Daniel
    Andre, Jalal B.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (01) : 192 - 204
  • [28] Enhanced spectral shaping in steady-state free precession imaging
    Cukur, Tolga
    Bangerter, Neal K.
    Nishimura, Dwight G.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1216 - 1223
  • [29] Flow artifacts in steady-state free precession cine imaging
    Storey, P
    Li, W
    Chen, Q
    Edelman, RR
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 115 - 122
  • [30] MOTION-INSENSITIVE, STEADY-STATE FREE PRECESSION IMAGING
    ZUR, Y
    WOOD, ML
    NEURINGER, LJ
    MAGNETIC RESONANCE IN MEDICINE, 1990, 16 (03) : 444 - 459