Classifying Epileptic EEG Signals with Delay Permutation Entropy and Multi-scale K-Means

被引:20
作者
Zhu, Guohun [1 ,2 ]
Li, Yan [1 ]
Wen, Peng [1 ]
Wang, Shuaifang [1 ]
机构
[1] Univ So Queensland, Fac Hlth Engn & Sci, Toowoomba, Qld 4350, Australia
[2] Guilin Univ Elect Technol, Sch Elect Engn & Automat, Guilin 541004, Guangxi, Peoples R China
来源
SIGNAL AND IMAGE ANALYSIS FOR BIOMEDICAL AND LIFE SCIENCES | 2015年 / 823卷
关键词
Unsupervised learning; Delay permutation entropy; MSK-means; SVM; Seizure detection; Epileptogenic focus location; CLASSIFICATION; PREDICTION; CHILDREN; SPECT;
D O I
10.1007/978-3-319-10984-8_8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4.7% higher accuracy than that of K-means, and 0.7% higher accuracy than that of the SVM.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 34 条
  • [1] Andrzejak R.G., BERN BARCELONA EEG D
  • [2] Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients
    Andrzejak, Ralph G.
    Schindler, Kaspar
    Rummel, Christian
    [J]. PHYSICAL REVIEW E, 2012, 86 (04)
  • [3] Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    Andrzejak, RG
    Lehnertz, K
    Mormann, F
    Rieke, C
    David, P
    Elger, CE
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 061907
  • [4] Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
  • [5] Scalable K-Means++
    Bahmani, Bahman
    Moseley, Benjamin
    Vattani, Andrea
    Kumar, Ravi
    Vassilvitskii, Sergei
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (07): : 622 - 633
  • [6] Permutation entropy: A natural complexity measure for time series
    Bandt, C
    Pompe, B
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [7] Mapping and assessment of epileptogenic foci using frequency-entropy templates
    Ben-Jacob, Eshel
    Doron, Itai
    Gazit, Tomer
    Rephaeli, Eden
    Sagher, Oren
    Towle, Vernon L.
    [J]. PHYSICAL REVIEW E, 2007, 76 (05):
  • [8] Localization of epileptogenic zones in Lennox-Gastaut syndrome using frequency domain source imaging of intracranial electroencephalography: a preliminary investigation
    Cho, Jae-Hyun
    Kang, Hoon-Chul
    Jung, Young-Jin
    Kim, Jeong-Youn
    Kim, Heung Dong
    Yoon, Dae Sung
    Lee, Yong-Ho
    Im, Chang-Hwan
    [J]. PHYSIOLOGICAL MEASUREMENT, 2013, 34 (02) : 247 - 263
  • [9] Multiscale entropy analysis of complex physiologic time series
    Costa, M
    Goldberger, AL
    Peng, CK
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (06) : 1 - 068102
  • [10] Neuronuclear assessment of patients with epilepsy
    Goffin, Karolien
    Dedeurwaerdere, Stefanie
    Van Laere, Koen
    Van Paesschen, Wim
    [J]. SEMINARS IN NUCLEAR MEDICINE, 2008, 38 (04) : 227 - 239