Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres

被引:13
|
作者
He, Yizhuo [1 ]
Luo, Jianghui [1 ]
Li, Yangguang [1 ]
Jia, Huiqiao [1 ]
Wang, Feng [1 ]
Zou, Chun [1 ]
Zheng, Chuguang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
OXY-FUEL COMBUSTION; NITRIC-OXIDE; PULVERIZED-COAL; NOX FORMATION; REDUCTION; HYDROCARBONS; TEMPERATURE; TECHNOLOGY; EMISSIONS; OXIDATION;
D O I
10.1021/acs.energyfuels.7b01797
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The reburning chemistry in oxy-fuel and oxy-steam combustion of methane was investigated both experimentally and numerically. Comparison experiments in O-2/N-2, O-2/CO2, and O-2/H2O atmospheres were performed in a flow reactor at atmospheric pressure with equivalence ratio ranging from fuel-rich to fuel-lean and temperature from 973 to 1773 K. Experimental results showed that compared with N-2 and CO2 atmospheres NO reduction observed in H2O atmosphere is the lowest under fuel-rich and stoichiometric conditions, while it is the highest under fuel-lean conditions. The NO reduction intensity in CO2 atmosphere lies between N-2 and H2O atmosphere under fuel-rich and fuel-lean conditions; however, it is the highest under stoichiometric conditions. A chemical kinetic mechanism, which was hierarchically structured and updated in our previous work, captured the main characteristics and quantity of CO and NO formation satisfactorily even under fuel-lean conditions. According to the analysis from a chemical kinetic point of view, CO2 and H2O exert significant impacts on altering the radical pool structure to OH dominant, subsequently varying the availability of hydrocarbon radical as a reducing agent, which is the primary reason for the different degrees of NO reduction under fuel-rich, stoichiometric, and fuel-lean conditions. In addition, CO2 and H2O also impact the NO reduction by nitrogen-containing radicals. For CO2 atmosphere, NCO radical always occupies an overwhelmingly dominant position in NO reduction due to HCN -> CH3CN -> CH2CN -> CN -> NCO, and HNCO -> NCO channel is amplified substantially. For H2O atmosphere, under fuel-rich and stoichiometric conditions, NH2 and NH radical are dominant due to the enhancement of NCO -> HNCO -> NH2 -> NH channel. Under fuel-lean conditions, NCO radical is dominant due to the strength of HNCO -> NCO channel.
引用
收藏
页码:11404 / 11412
页数:9
相关论文
共 50 条
  • [21] Comparison of Particle Size Evolution during Pulverized Coal Combustion in O2/CO2 and O2/N2 Atmospheres
    Chen, Yuan
    Wang, Guoliang
    Sheng, Changdong
    ENERGY & FUELS, 2014, 28 (01) : 136 - 145
  • [22] Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere
    Chen, Jyh-Cherng
    Liu, Zhen-Shu
    Huang, Jian-Sheng
    JOURNAL OF HAZARDOUS MATERIALS, 2007, 142 (1-2) : 266 - 271
  • [23] ELECTRON ATTACHMENT AND DETACHMENT .2. MIXTURES OF O2 AND CO2 AND OF O2 AND H2O
    PACK, JL
    PHELPS, AV
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (11): : 4316 - &
  • [24] Combustion efficiency and CO2 emission from O2/N2, O2/CO2, and O2/RFG coal combustion processes
    Chen, Jyh-Cherng
    Huang, Jian-Sheng
    ENVIRONMENTAL ENGINEERING SCIENCE, 2007, 24 (03) : 353 - 362
  • [25] An experimental study and numerical modeling of combusting two coal chars in a drop-tube reactor: A comparison between N2/O2, CO2/O2, and N2/CO2/O2 atmospheres
    Tolvanen, Henrik
    Raiko, Risto
    FUEL, 2014, 124 : 190 - 201
  • [26] Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, ZhiYi
    BIORESOURCE TECHNOLOGY, 2011, 102 (02) : 1879 - 1885
  • [27] Study on the surface active reactivity of coal char conversion in O2/CO2 and O2/N2 atmospheres
    Liu, Yang
    Fu, Peifang
    Zhang, Bin
    Yue, Fang
    Zhou, Huaichun
    Zheng, Chuguang
    FUEL, 2016, 181 : 1244 - 1256
  • [28] Modeling char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres
    Brix, Jacob
    Jensen, Peter Arendt
    Jensen, Anker Degn
    FUEL, 2011, 90 (06) : 2224 - 2239
  • [29] Thermogravimetric characteristics and combustion emissions of rubbers and polyvinyl chloride in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, ZhiYi
    Zhou, DaoXi
    Chen, Yong
    FUEL, 2013, 104 : 508 - 514
  • [30] Simulation of Soot Formation in Pulverized Coal Combustion under O2/N2 and O2/CO2 Atmospheres
    Zheng, Jianxiang
    Du, Mengxia
    Xiao, Zuxin
    Zhu, Xiuli
    ACS OMEGA, 2024, 9 (20): : 22051 - 22064