Optimistic Multi-granulation Rough Set-Based Classification for Neonatal Jaundice Diagnosis

被引:6
|
作者
Kumar, S. Senthil [1 ]
Inbarani, H. Hannah [1 ]
Azar, Ahmad Taher [2 ]
Own, Hala S. [3 ]
Balas, Valentina Emilia [4 ]
Olariu, Teodora [5 ]
机构
[1] Periyar Univ, Dept Comp Sci, Salem 636011, India
[2] Benha Univ, Fac Comp & Informat, Banha, Egypt
[3] Natl Res Inst Astron & Geophys, Helwan, Egypt
[4] Aurel Vlaicu Univ Arad, Arad, Romania
[5] Vasile Goldis West Univ Arad, Satu Mare, Romania
来源
SOFT COMPUTING APPLICATIONS, (SOFA 2014), VOL 1 | 2016年 / 356卷
关键词
Rough set; Optimistic multi-granulation rough set; Neonatal jaundice data; Classification; Comparative analysis of classification measures;
D O I
10.1007/978-3-319-18296-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neonatal jaundice diagnosis has been approached by various machine learning techniques. Pattern recognition algorithms are capable of improving the quality of prediction, early diagnosis of diseases, and disease classification. Pattern recognition algorithm results in Neonatal jaundice diagnosis or description of jaundice treatment by the medical specialist. This research focuses on applying rough set-based data mining techniques for Neonatal jaundice data to discover locally frequent identification of jaundice diseases. This work applies Optimistic Multi-granulation rough set model (OMGRS) for Neonatal jaundice data classification. Multi-granulation rough set provides efficient results than single granulation rough set model and soft rough set-based classifier model. The performance of the proposed Multi-granulation rough set-based classification is compared with other Naive bayes, Back Propagation Neural Networks (BPN), and Kth Nearest Neighbor (KNN) approaches using various classification measures.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 50 条
  • [21] Matrix-based fast granularity reduction algorithm of multi-granulation rough set
    Yi Xu
    Min Wang
    Shanzhong Hu
    Artificial Intelligence Review, 2023, 56 : 4113 - 4135
  • [22] Multi-granulation rough sets based on tolerance relations
    Xu, Weihua
    Wang, Qiaorong
    Zhang, Xiantao
    SOFT COMPUTING, 2013, 17 (07) : 1241 - 1252
  • [23] Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications
    Bo, Chunxin
    Zhang, Xiaohong
    Shao, Songtao
    SYMMETRY-BASEL, 2019, 11 (07):
  • [24] Multi-granulation rough sets based on tolerance relations
    Weihua Xu
    Qiaorong Wang
    Xiantao Zhang
    Soft Computing, 2013, 17 : 1241 - 1252
  • [25] On multi-granulation covering rough sets
    Liu, Caihui
    Miao, Duoqian
    Qian, Jin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (06) : 1404 - 1418
  • [26] Matrix-based fast granularity reduction algorithm of multi-granulation rough set
    Xu, Yi
    Wang, Min
    Hu, Shanzhong
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (05) : 4113 - 4135
  • [27] Multi-granulation fuzzy rough sets
    Xu, Weihua
    Wang, Qiaorong
    Luo, Shuqun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1323 - 1340
  • [28] Multi-granulation Rough Sets Based on Central Sets
    Liu, Caihui
    Wang, Meizhi
    Liu, Yujiang
    Wang, Min
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 59 - 68
  • [29] On Multi-Granulation Rough Sets with Its Applications
    Abu-Gdairi, Radwan
    Mareay, R.
    Badr, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 1025 - 1038
  • [30] The Graded Multi-granulation Rough Set Based on Interval-valued Fuzzy Information System
    Shi, Derong
    Sang, Binin
    Xu, Weihua
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,