Jensen-Mercer Type Inequalities for Operator h-Convex Functions

被引:3
作者
Abbasi, Mostafa [1 ]
Morassaei, Ali [1 ]
Mirzapour, Farzollah [1 ]
机构
[1] Univ Zanjan, Fac Sci, Dept Math, Univ Blvd, Zanjan 4537138791, Iran
关键词
h-Convex function; Jensen-Mercer inequality; Operator inequality; Hilbert space;
D O I
10.1007/s41980-021-00652-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we state some characterizations of h-convex function defined on a convex set in a linear space. By doing so, we extend the Jensen-Mercer inequality for h-convex function. We present the concept of operator h-convex functions and give some operator versions of Jensen and Jensen-Mercer type inequalities for some classes of operator h-convex functions and unital positive linear maps. Finally, we introduce the complementary inequality of Jensen's inequality for h-convex functions.
引用
收藏
页码:2441 / 2462
页数:22
相关论文
共 50 条
[41]   On new inequalities for h-convex functions via Riemann-Liouville fractional integration [J].
Tunc, Mevlut .
FILOMAT, 2013, 27 (04) :559-565
[42]   Operator inequalities associated with the Kantorovich type inequalities for s-convex functions [J].
Nikoufar, Ismail ;
Saeedi, Davuod .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 54 (4) :1268-1277
[43]   On generalized strongly modified h-convex functions [J].
Zhao, Taiyin ;
Saleem, Muhammad Shoaib ;
Nazeer, Waqas ;
Bashir, Imran ;
Hussain, Ijaz .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[44]   Hermite-Hadamard-Type Inequalities for h-Convex Functions Involving New Fractional Integral Operators with Exponential Kernel [J].
Wu, Yaoqun .
FRACTAL AND FRACTIONAL, 2022, 6 (06)
[45]   SOME HERMITE-JENSEN-MERCER LIKE INEQUALITIES FOR CONVEX FUNCTIONS THROUGH A CERTAIN GENERALIZED FRACTIONAL INTEGRALS AND RELATED RESULTS [J].
Butt, Saad Ihsan ;
Akdemir, Ahmet Ocak ;
Nasir, Jamshed ;
Jarad, Fahd .
MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) :689-715
[46]   Lipschitz continuity for H-convex functions in Carnot groups [J].
Sun, MB ;
Yang, XP .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (01) :1-8
[47]   On Ostrowski-Mercer inequalities for differentiable harmonically convex functions with applications [J].
Ali, Muhammad Aamir ;
Asjad, Muhammad Imran ;
Budak, Huseyin ;
Faridi, Waqas Ali .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) :8546-8559
[48]   Hermite-Jensen-Mercer type inequalities for conformable integrals and related results [J].
Butt, Saad Ihsan ;
Nadeem, Mehroz ;
Qaisar, Shahid ;
Akdemir, Ahmet Ocak ;
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[49]   A NOTE ON CHARACTERIZATION OF h-CONVEX FUNCTIONS VIA HERMITE-HADAMARD TYPE INEQUALITY [J].
Delavar, M. Rostamian ;
Dragomir, S. S. ;
De La Sen, M. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (02) :28-36
[50]   MILNE-TYPE INEQUALITIES FOR h- CONVEX FUNCTIONS [J].
Benaissa, Bouharket ;
Sarikaya, Mehmet Zeki .
REAL ANALYSIS EXCHANGE, 2024, 49 (02) :363-376