Breast cancer prediction using a neural network model

被引:0
作者
Nastac, I [1 ]
Jalava, P [1 ]
Collan, M [1 ]
Collan, Y [1 ]
Kuopio, T [1 ]
Back, B [1 ]
机构
[1] Abo Akad Univ, TUCS, Turku, Finland
来源
Soft Computing with Industrial Applications, Vol 17 | 2004年 / 17卷
关键词
ER; neural network; training; test; prediction; cutpoint; efficiency; sensitivity; specificity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reports results on using an artificial Moral network (ANN) for predicting the estrogen receptor (ER) status, which is not always available, but has a place in therapy selection of breast cancer. Our results show that in more than two thirds of the cases, the ANN is able to predict the correct ER status. An optimum neural architecture was researched, and optimal cutpoint for prediction selected on the basis of clinical data.
引用
收藏
页码:423 / 428
页数:6
相关论文
共 12 条
  • [1] [Anonymous], CANC PRINCIPLES PRAC
  • [2] BAAK JPA, 1985, CANCER, V56, P374, DOI 10.1002/1097-0142(19850715)56:2<374::AID-CNCR2820560229>3.0.CO
  • [3] 2-9
  • [4] IN SEARCH FOR THE BEST QUALITATIVE MICROSCOPICAL OR MORPHOMETRICAL PREDICTOR OF ESTROGEN-RECEPTOR IN BREAST-CANCER
    BAAK, JPA
    PERSIJN, JP
    [J]. PATHOLOGY RESEARCH AND PRACTICE, 1984, 178 (04) : 307 - 314
  • [5] Galen RS, 1975, NORMALITY PREDICTIVE
  • [6] GUAZZI A, 1985, CANCER-AM CANCER SOC, V56, P1972, DOI 10.1002/1097-0142(19851015)56:8<1972::AID-CNCR2820560814>3.0.CO
  • [7] 2-P
  • [8] HAGAN MT, 1996, NEURAL NETWORKS DESI
  • [9] Neural network analysis of follow-up data in primary breast cancer
    Harbeck, N
    Kates, R
    Ulm, K
    Graeff, H
    Schmitt, M
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 2000, 15 (01) : 116 - 122
  • [10] Jalava PJ, 2000, ANTICANCER RES, V20, P1213