Asymptotic normality of kernel estimates in a regression model for random fields

被引:14
作者
El Machkouri, Mohamed [1 ]
Stoica, Radu [2 ]
机构
[1] Univ Rouen, Lab Math Raphael Salem, UMR CNRS 6085, F-76801 St Etienne, France
[2] Univ Lille 1, Lab Math Paul Painleve, UMR CNRS 8524, UFR Math Pures & Appl, F-59655 Villeneuve Dascq, France
关键词
nonparametric regression estimation; asymptotic normality; kernel estimator; strongly mixing random field; CENTRAL-LIMIT-THEOREM; DENSITY-ESTIMATION;
D O I
10.1080/10485250903505893
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the asymptotic normality of the regression estimator in a fixed-design setting when the errors are given by a field of dependent random variables. The result applies to martingale-difference or strongly mixing random fields. On this basis, a statistical test that can be applied to image analysis is also presented.
引用
收藏
页码:955 / 971
页数:17
相关论文
共 28 条
[1]   Krige, smooth, both or neither? (with discussion) [J].
Altman, N .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (04) :441-454
[2]  
[Anonymous], 1994, Lecture notes in Statistics
[3]  
[Anonymous], 2003, Image analysis, random fields and Markov chain Monte Carlo methods: a mathematical introduction
[4]  
Biau G., 2004, Stat. Inference Stoch. Process, V7, P327, DOI [10.1023/B:SISP.0000049116.23705.88, DOI 10.1023/B:SISP.0000049116.23705.88]
[5]  
Biau G., 2003, MATH METHODS STAT, V12, P371
[6]  
Bosq D., 1998, LECT NOTES STAT
[7]   Kernel density estimation for random fields (density estimation for random fields) [J].
Carbon, M ;
Tran, LT ;
Wu, B .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) :115-125
[8]  
Carbon M., 1996, J NONPARAMETR STAT, V6, P157
[9]   A central limit theorem for stationary random fields [J].
Dedecker, J .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (03) :397-426
[10]  
El Machkouri M., 2007, STAT INFER STOCH PRO, V10, P29