Comparison of Deep Learning Models for the Classification of Noctilucent Cloud Images

被引:1
作者
Sapkota, Rajendra [1 ]
Sharma, Puneet [1 ]
Mann, Ingrid [2 ]
机构
[1] UiT Arctic Univ Norway, Dept Automat & Proc Engn, N-9019 Tromso, Norway
[2] UiT Arctic Univ Norway, Dept Phys & Technol, N-9019 Tromso, Norway
关键词
noctilucent cloud (NLC); machine learning; convolutional neural network; transfer learning; image classification; saliency map; guided back-propagation; NETWORK;
D O I
10.3390/rs14102306
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Optically thin layers of tiny ice particles near the summer mesopause, known as noctilucent clouds, are of significant interest within the aeronomy and climate science communities. Ground-based optical cameras mounted at various locations in the arctic regions collect the dataset during favorable summer times. In this paper, first, we compare the performances of various deep learning-based image classifiers against a baseline machine learning model trained with support vector machine (SVM) algorithm to identify an effective and lightweight model for the classification of noctilucent clouds. The SVM classifier is trained with histogram of oriented gradient (HOG) features, and deep learning models such as SqueezeNet, ShuffleNet, MobileNet, and Resnet are fine-tuned based on the dataset. The dataset includes images observed from different locations in northern Europe with varied weather conditions. Second, we investigate the most informative pixels for the classification decision on test images. The pixel-level attributions calculated using the guide back-propagation algorithm are visualized as saliency maps. Our results indicate that the SqueezeNet model achieves an F1 score of 0.95. In addition, SqueezeNet is the lightest model used in our experiments, and the saliency maps obtained for a set of test images correspond better with relevant regions associated with noctilucent clouds.
引用
收藏
页数:12
相关论文
共 31 条
[1]  
Bengio Y., 1997, HDB BRAIN THEORY NEU
[2]  
Burkov A., 2019, HUNDRED PAGE MACHINE, V1, P5
[3]   Ground-based observations of noctilucent clouds with a northern hemisphere network of automatic digital cameras [J].
Dalin, P. ;
Pertsev, N. ;
Zadorozhny, A. ;
Connors, M. ;
Schofield, I. ;
Shelton, I. ;
Zalcik, M. ;
McEwang, T. ;
McEachrang, I. ;
Frandsen, S. ;
Hansen, O. ;
Andersen, H. ;
Sukhodoev, V. ;
Perminov, V. ;
Romejko, V. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2008, 70 (11-12) :1460-1472
[4]   Comparison of long-term Moscow and Danish NLC observations: statistical results [J].
Dalin, P. ;
Kirkwood, S. ;
Andersen, H. ;
Hansen, O. ;
Pertsev, N. ;
Romejko, V. .
ANNALES GEOPHYSICAE, 2006, 24 (11) :2841-2849
[5]   Response of noctilucent cloud brightness to daily solar variations [J].
Dalin, P. ;
Pertsev, N. ;
Perminov, V. ;
Dubietis, A. ;
Zadorozhny, A. ;
Zalcik, M. ;
McEachran, I. ;
McEwan, T. ;
Cernis, K. ;
Gronne, J. ;
Taustrup, T. ;
Hansen, O. ;
Andersen, H. ;
Melnikov, D. ;
Manevich, A. ;
Romejko, V. ;
Lifatova, D. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2018, 169 :83-90
[6]   Noctilucent clouds: modern ground-based photographic observations by a digital camera network [J].
Dubietis, Audrius ;
Dalin, Peter ;
Balciunas, Ricardas ;
Cernis, Kazimieras ;
Pertsev, Nikolay ;
Sukhodoev, Vladimir ;
Perminov, Vladimir ;
Zalcik, Mark ;
Zadorozhny, Alexander ;
Connors, Martin ;
Schofield, Ian ;
McEwan, Tom ;
McEachran, Iain ;
Frandsen, Soeren ;
Hansen, Ole ;
Andersen, Holger ;
Gronne, Jesper ;
Melnikov, Dmitry ;
Manevich, Alexander ;
Romejko, Vitaly .
APPLIED OPTICS, 2011, 50 (28) :F72-F79
[7]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[8]  
He K., 2016, IEEE C COMPUTER VISI, P770, DOI DOI 10.1109/CVPR.2016.90
[9]  
He K, 2017, ARXIV170306870, P2980
[10]   Mid-latitude mesospheric clouds and their environment from SOFIE observations [J].
Hervig, Mark E. ;
Gerding, Michael ;
Stevens, Michael H. ;
Stockwell, Robert ;
Bailey, Scott M. ;
Russell, James M., III ;
Stober, Gunter .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2016, 149 :1-14