Nested generalized linear mixed models: an orthodox best linear unbiased predictor approach

被引:44
作者
Ma, Renjun [1 ]
Jorgensen, Bent
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
[2] Univ So Denmark, Odense, Denmark
关键词
EM algorithm; estimating equation; generalized linear model; random effects; tweedie exponential dispersion model;
D O I
10.1111/j.1467-9868.2007.00603.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new class of generalized linear mixed models based on the Tweedie exponential dispersion model distributions, accommodating a wide range of discrete, continuous and mixed data. Using the best linear unbiased predictor of random effects, we obtain an optimal estimating function for the regression parameters in the sense of Godambe, allowing an efficient common fitting algorithm for the whole class. Although allowing full parametric inference, our main results depend only on the first- and second-moment assumptions of unobserved random effects. In addition, we obtain consistent estimators for both regression and dispersion parameters. We illustrate the method by analysing the epilepsy data and cake baking data. Along with simulations and asymptotic justifications, this shows the usefulness of the method for analysis of clustered non-normal data.
引用
收藏
页码:625 / 641
页数:17
相关论文
共 41 条
[1]   Negative binomial loglinear mixed models [J].
Booth, JG ;
Casella, G ;
Friedl, H ;
Hobert, JP .
STATISTICAL MODELLING, 2003, 3 (03) :179-191
[2]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[3]  
Cochran W.G. G.M. Cox., 1957, Experimental Design
[4]  
CROWDER M, 1987, BIOMETRIKA, V74, P591, DOI 10.1093/biomet/74.3.591
[5]  
CROWDER M, 1986, ECONOMET THEOR, V3, P305
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
DRAPER D, 1996, J ROY STAT SOC B, V58, P662
[8]  
FIRTH D, 1991, BIOMETRIKA, V78, P545
[9]  
GODAMBE VP, 1976, BIOMETRIKA, V63, P277, DOI 10.2307/2335620
[10]  
Goldstein H., 2010, Multilevel statistical models, V4th