Robust whole slide image analysis for cervical cancer screening using deep learning

被引:76
作者
Cheng, Shenghua [1 ,2 ,3 ]
Liu, Sibo [1 ,2 ,3 ]
Yu, Jingya [1 ,2 ,3 ]
Rao, Gong [1 ,2 ,3 ]
Xiao, Yuwei [1 ,2 ,3 ]
Han, Wei [1 ,2 ,3 ]
Zhu, Wenjie [4 ]
Lv, Xiaohua [1 ,2 ,3 ]
Li, Ning [1 ,2 ,3 ]
Cai, Jing [5 ]
Wang, Zehua [5 ]
Feng, Xi [6 ]
Yang, Fei [6 ]
Geng, Xiebo [1 ,2 ,3 ]
Ma, Jiabo [1 ,2 ,3 ]
Li, Xu [1 ,2 ,3 ]
Wei, Ziquan [1 ,2 ,3 ]
Zhang, Xueying [1 ,2 ,3 ]
Quan, Tingwei [1 ,2 ,3 ]
Zeng, Shaoqun [1 ,2 ,3 ]
Chen, Li [7 ]
Hu, Junbo [4 ]
Liu, Xiuli [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Collaborat Innovat Ctr Biomed Engn, Wuhan, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Engn Sci, Britton Chance Ctr, Wuhan, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Engn Sci, MOE Key Lab Biomed Photon, Wuhan, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Tongji Med Coll, Maternal & Child Hosp Hubei Prov, Dept Pathol, Wuhan, Hubei, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Obstet & Gynecol, Wuhan, Peoples R China
[6] Huazhong Univ Sci & Technol, Tongji Med Coll, Hubei Canc Hosp, Dept Pathol, Wuhan, Hubei, Peoples R China
[7] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Clin Lab, Wuhan, Hubei, Peoples R China
关键词
GYNECOLOGIC CYTOLOGY; SEGMENTATION; SYSTEM; CLASSIFICATION;
D O I
10.1038/s41467-021-25296-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable results with cytologists. Computer-assisted diagnosis is key for scaling up cervical cancer screening. However, current recognition algorithms perform poorly on whole slide image (WSI) analysis, fail to generalize for diverse staining and imaging, and show sub-optimal clinical-level verification. Here, we develop a progressive lesion cell recognition method combining low- and high-resolution WSIs to recommend lesion cells and a recurrent neural network-based WSI classification model to evaluate the lesion degree of WSIs. We train and validate our WSI analysis system on 3,545 patient-wise WSIs with 79,911 annotations from multiple hospitals and several imaging instruments. On multi-center independent test sets of 1,170 patient-wise WSIs, we achieve 93.5% Specificity and 95.1% Sensitivity for classifying slides, comparing favourably to the average performance of three independent cytopathologists, and obtain 88.5% true positive rate for highlighting the top 10 lesion cells on 447 positive slides. After deployment, our system recognizes a one giga-pixel WSI in about 1.5 min.
引用
收藏
页数:10
相关论文
共 51 条
[1]  
[Anonymous], 2015, Definitions, criteria, and explanatory notes
[2]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[3]  
[Anonymous], 2021, NVIDIA TENSORRT RELE
[4]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[5]   THRESHOLDING METHOD FOR AUTOMATIC CELL IMAGE SEGMENTATION [J].
BORST, H ;
ABMAYR, W ;
GAIS, P .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1979, 27 (01) :180-187
[6]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[7]   SEGMENTATION OF CERVICAL CELL IMAGES [J].
CAHN, RL ;
POULSEN, RS ;
TOUSSAINT, G .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1977, 25 (07) :681-688
[8]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[9]   CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology [J].
Chen, Hua ;
Liu, Juan ;
Wen, Qing-Man ;
Zuo, Zhi-Qun ;
Liu, Jia-Sheng ;
Feng, Jing ;
Pang, Bao-Chuan ;
Xiao, Di .
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2021, 36 (02) :347-360
[10]   Semi-Automatic Segmentation and Classification of Pap Smear Cells [J].
Chen, Yung-Fu ;
Huang, Po-Chi ;
Lin, Ker-Cheng ;
Lin, Hsuan-Hung ;
Wang, Li-En ;
Cheng, Chung-Chuan ;
Chen, Tsung-Po ;
Chan, Yung-Kuan ;
Chiang, John Y. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (01) :94-108