Multiplicity of solutions for a class of semilinear Schrodinger equations with sign-changing potential

被引:30
作者
Zhang, Qingye [1 ]
Xu, Bin [2 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Peoples R China
[2] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Schrodinger equation; Superquadratic; Sign-changing potential; SCALAR FIELD-EQUATIONS; EXISTENCE; R(N);
D O I
10.1016/j.jmaa.2010.11.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of infinitely many nontrivial solutions for a class of semilinear Schrodinger equations -Delta u + V(x)u = f (x, u), x epsilon R-N, where the primitive of the nonlinearity f is of superquadratic growth near infinity in u and the potential V is allowed to be sign-changing. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:834 / 840
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2003, ACTA MATH SIN CHIN S
[2]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[3]   INFINITELY MANY RADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC PROBLEM ON R(N) [J].
BARTSCH, T ;
WILLEM, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :261-276
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]  
DING WY, 1986, ARCH RATION MECH AN, V91, P183
[8]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[9]   REMARKS ON A SEMILINEAR ELLIPTIC EQUATION ON RN [J].
LI, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (01) :34-49
[10]   NONAUTONOMOUS NONLINEAR SCALAR FIELD-EQUATIONS [J].
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (02) :283-301