Venation networks and the origin of the leaf economics spectrum

被引:227
作者
Blonder, Benjamin [1 ]
Violle, Cyrille [1 ,2 ]
Bentley, Lisa Patrick [1 ]
Enquist, Brian J. [1 ,3 ]
机构
[1] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
[2] CNRS, Ctr Ecol Fonct & Evolut, UMR 5175, F-34293 Montpellier, France
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
Functional trait; leaf life span; leaf nitrogen content; LMA; loopiness; photosynthesis; physiological tradeoff; vein density; vein distance; venation network; CONSTRUCTION COSTS; CHEMICAL-COMPOSITION; PHOTOSYNTHETIC RATE; PLANT ECONOMICS; SCALING LAWS; LIFE-SPAN; LEAVES; TRAITS; ARCHITECTURE; LONGEVITY;
D O I
10.1111/j.1461-0248.2010.01554.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
P>The leaf economics spectrum describes biome-invariant scaling functions for leaf functional traits that relate to global primary productivity and nutrient cycling. Here, we develop a comprehensive framework for the origin of this leaf economics spectrum based on venation-mediated economic strategies. We define a standardized set of traits - density, distance and loopiness - that provides a common language for the study of venation. We develop a novel quantitative model that uses these venation traits to model leaf-level physiology, and show that selection to optimize the venation network predicts the mean global trait-trait scaling relationships across 2548 species. Furthermore, using empirical venation data for 25 plant species, we test our model by predicting four key leaf functional traits related to leaf economics: net carbon assimilation rate, life span, leaf mass per area ratio and nitrogen content. Together, these results indicate that selection on venation geometry is a fundamental basis for understanding the diversity of leaf form and function, and the carbon balance of leaves. The model and associated predictions have broad implications for integrating venation network geometry with pattern and process in ecophysiology, ecology and palaeobotany.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 83 条
[1]   Size and form in efficient transportation networks [J].
Banavar, JR ;
Maritan, A ;
Rinaldo, A .
NATURE, 1999, 399 (6732) :130-132
[2]   Topology of the fittest transportation network [J].
Banavar, JR ;
Colaiori, F ;
Flammini, A ;
Maritan, A ;
Rinaldo, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4745-4748
[3]   Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate [J].
Beer, Christian ;
Reichstein, Markus ;
Tomelleri, Enrico ;
Ciais, Philippe ;
Jung, Martin ;
Carvalhais, Nuno ;
Roedenbeck, Christian ;
Arain, M. Altaf ;
Baldocchi, Dennis ;
Bonan, Gordon B. ;
Bondeau, Alberte ;
Cescatti, Alessandro ;
Lasslop, Gitta ;
Lindroth, Anders ;
Lomas, Mark ;
Luyssaert, Sebastiaan ;
Margolis, Hank ;
Oleson, Keith W. ;
Roupsard, Olivier ;
Veenendaal, Elmar ;
Viovy, Nicolas ;
Williams, Christopher ;
Woodward, F. Ian ;
Papale, Dario .
SCIENCE, 2010, 329 (5993) :834-838
[4]  
Bohn S, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.061914
[5]   Angiosperm leaf vein evolution was physiologically and environmentally transformative [J].
Boyce, C. Kevin ;
Brodribb, Tim J. ;
Feild, Taylor S. ;
Zwieniecki, Maciej A. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 276 (1663) :1771-1776
[6]   Leaf maximum photosynthetic rate and venation are linked by hydraulics1[W][OA] [J].
Brodribb, Tim J. ;
Feild, Taylor S. ;
Jordan, Gregory J. .
PLANT PHYSIOLOGY, 2007, 144 (04) :1890-1898
[7]   Viewing leaf structure and evolution from a hydraulic perspective [J].
Brodribb, Tim J. ;
Feild, Taylor S. ;
Sack, Lawren .
FUNCTIONAL PLANT BIOLOGY, 2010, 37 (06) :488-498
[8]   Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification [J].
Brodribb, Tim J. ;
Feild, Taylor S. .
ECOLOGY LETTERS, 2010, 13 (02) :175-183
[9]  
BUCK AL, 1981, J APPL METEOROL, V20, P1527, DOI 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO
[10]  
2