Feedforward control of a channel flow based on a discretized port-Hamiltonian model

被引:5
作者
Kotyczka, Paul [1 ]
Blancato, Antonio [1 ]
机构
[1] Tech Univ Munich, Inst Automat Control, D-85748 Garching, Germany
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 13期
关键词
Distributed-parameter systems; conservation laws; port-Hamiltonian systems; discretization; feedforward control; stable dynamic inversion; SYSTEMS;
D O I
10.1016/j.ifacol.2015.10.238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Systems of conservation laws can be modeled (including dissipation) in an elegant, physically insightful way within the port-Hamiltonian framework. A structure-preserving discretization renders the partial differential equations ordinary ones. In this paper, we show how the structure of the lumped-parameter state representation for two conservation laws On a One-dimensional. spatial domain can he exploited to easily formulate different (inverse) models. Based thereon, a simple modular procedure for feedforward controller design is developed, using known results from the dynamic inversion of nonminimilm-phase systems. The example of the shallow water equations serves to illustrate the design steps and to present simulation results. (C) 2015, ILAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 199
页数:6
相关论文
共 50 条
  • [41] Analysis of Modified Repetitive Control Schemes: the Port-Hamiltonian Approach
    Califano, Federico
    Macchelli, Alessandro
    Melchiorri, Claudio
    IFAC PAPERSONLINE, 2018, 51 (03): : 107 - 112
  • [42] Modeling and control of an IPMC actuated flexible beam under the port-Hamiltonian framework
    Wu, Yongxin
    Lamoline, Francois
    Winkin, Joseph
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2019, 52 (02): : 108 - 113
  • [43] Port-Hamiltonian Modelling for Buckling Control of a Vertical Flexible Beam with Actuation at the Bottom
    Trivedi, Megha V.
    Banavar, Ravi N.
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2015, 48 (13): : 31 - 38
  • [44] Power scaling in port-Hamiltonian based bilateral telemanipulation
    Secchi, C
    Stramigioli, S
    Fantuzzi, C
    2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-4, 2005, : 2838 - 2843
  • [45] Fixed-time stabilization control for port-Hamiltonian systems
    Xinggui Liu
    Xiaofeng Liao
    Nonlinear Dynamics, 2019, 96 : 1497 - 1509
  • [46] Asymptotic stabilization via control by interconnection of port-Hamiltonian systems
    Castanos, Fernando
    Ortega, Romeo
    van der Schaft, Arjan
    Astolfi, Alessandro
    AUTOMATICA, 2009, 45 (07) : 1611 - 1618
  • [47] Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach
    Aoues, Said
    Cardoso-Ribeiro, Flavio Luiz
    Matignon, Denis
    Alazard, Daniel
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (01) : 355 - 362
  • [48] Port-Hamiltonian Formulation of Rigid-Body Attitude Control
    Forni, Paulo
    Jeltsema, Dimitri
    Lopes, Gabriel A. D.
    IFAC PAPERSONLINE, 2015, 48 (13): : 164 - 169
  • [49] Fixed-time stabilization control for port-Hamiltonian systems
    Liu, Xinggui
    Liao, Xiaofeng
    NONLINEAR DYNAMICS, 2019, 96 (02) : 1497 - 1509
  • [50] Adaptive Path-Tracking Control With Passivity-Based Observer by Port-Hamiltonian Model for Autonomous Vehicles
    Ma, Yan
    He, Liang
    Song, Ting
    Wang, Danwei
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (08): : 4120 - 4130