Organic carbon stabilization in the fractal pore structure of Andosols

被引:77
作者
Chevallier, Tiphaine [1 ]
Woignier, Thierry [2 ,3 ]
Toucet, Joele [1 ]
Blanchart, Eric [1 ]
机构
[1] IRD, UMR Eco&Sols, Montpellier, France
[2] IRD, UMR Eco&Sols, PRAM, CNRS, Le Lamentin, France
[3] Univ Montpellier, CNRS, Montpellier, France
关键词
Soil organic carbon; Mesopore structure; Allophane; dV/dR; Fractal pore structure; SOC bioavailability; MICROBIAL BIOMASS; NATURAL GELS; XE-129; NMR; SOIL; MATTER; NITROGEN; MINERALIZATION; SEQUESTRATION; ADSORPTION; AGGREGATE;
D O I
10.1016/j.geoderma.2010.07.010
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Despite the outstanding potential of Andosols for soil organic carbon (SOC) sequestration, the importance of the different mechanisms involved in protecting SOC against mineralization is still unclear. Previous studies have described allophane particles as having a fractal structure. One hypothesis is that SOC is adsorbed or trapped in this fractal structure and could be less available to microbes and enzymes. This paper aims to determine the fractal structure of allophanic soils, especially in mesopores (2-50 nm), and to establish a correlation between the SOC bioavailability and the fractal features of the allophane aggregates. The present study confirms the fractal structure of allophane aggregates. The structural features of the pores, measured using N-2 adsorption-desorption curves and SAXS for the nano-scale range, showed correlation with SOC bioavailability. SOC bioavailability decreased with the extent of the fractal structure. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 188
页数:7
相关论文
共 44 条
[1]   ASSAY FOR MICROBIAL BIOMASS BASED ON NINHYDRIN-REACTIVE NITROGEN IN EXTRACTS OF FUMIGATED SOILS [J].
AMATO, M ;
LADD, JN .
SOIL BIOLOGY & BIOCHEMISTRY, 1988, 20 (01) :107-114
[2]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[3]   Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion [J].
Basile-Doelsch, I ;
Amundson, R ;
Stone, WEE ;
Masiello, CA ;
Bottero, JY ;
Colin, F ;
Masin, F ;
Borschneck, D ;
Meunier, JD .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2005, 56 (06) :689-703
[4]   Total carbon and nitrogen in the soils of the world [J].
Batjes, N. H. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2014, 65 (01) :10-21
[5]   RELATIVE EFFICIENCY OF COMPLEXED ALUMINUM, NONCRYSTALLINE AL HYDROXIDE, ALLOPHANE AND IMOGOLITE IN RETARDING THE BIODEGRADATION OF CITRIC-ACID [J].
BOUDOT, JP .
GEODERMA, 1992, 52 (1-2) :29-39
[6]  
Brinker C. J., 2013, SOL GEL SCI PHYS CHE, DOI [DOI 10.1016/B978-0-08-057103-4.50001-5, 10.1016/C2009-0-22386-5]
[7]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[8]   Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena [J].
Buurman, P. ;
Peterse, F. ;
Martin, G. Almendros .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2007, 58 (06) :1330-1347
[9]   Fractal structure in natural gels:: effect on carbon sequestration in volcanic soils [J].
Chevallier, T. ;
Woignier, T. ;
Toucet, J. ;
Blanchart, E. ;
Dieudonne, P. .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2008, 48 (1-2) :231-238
[10]   Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors [J].
Denaix, L ;
Lamy, I ;
Bottero, JY .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1999, 158 (03) :315-325