On the Regularity Set and Angular Integrability for the Navier-Stokes Equation

被引:21
作者
D'Ancona, Piero [1 ]
Luca, Renato [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
[2] CSIC, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
基金
欧洲研究理事会;
关键词
CAFFARELLI-KOHN-NIRENBERG; WEAK SOLUTIONS; GLOBAL-SOLUTIONS; INEQUALITIES; SOBOLEV; SPACES; LP;
D O I
10.1007/s00205-016-0982-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the size of the regular set for suitable weak solutions of the Navier-Stokes equation, in the sense of Caffarelli-Kohn-Nirenberg (Commun Pure Appl Math 35:771-831, 1982). We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space in an appropriate limit. In particular, we obtain that if the norm with weight of the data tends to 0, the regular set invades ; this result improves Theorem D of Caffarelli et al. (Commun Pure Appl Math 35:771-831, 1982).
引用
收藏
页码:1255 / 1284
页数:30
相关论文
共 36 条
[21]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[22]   Regularity criteria with angular integrability for the Navier-Stokes equation [J].
Luca, Renato .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 105 :24-40
[23]   Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation [J].
Machihara, S ;
Nakamura, M ;
Nakanishi, K ;
Ozawa, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) :1-20
[24]   SHARP MORAWETZ ESTIMATES [J].
Ozawa, Tohru ;
Rogers, Keith M. .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 121 :163-175
[25]   Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in R(3) [J].
Planchon, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :319-336
[26]  
Prodi G., 1959, Annali di Matematica Pura ed Applicata, V48, P173, DOI 10.1007/BF02410664
[27]   HAUSDORFF MEASURE AND NAVIER-STOKES EQUATIONS [J].
SCHEFFER, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :97-112
[28]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[29]  
Serrin J., 1963, NONLINEAR PROBLEMS, P68
[30]  
Sohr H., 1983, MATH Z, V184, P339