Decomposition of Reachable Sets and Tubes for a Class of Nonlinear Systems

被引:104
作者
Chen, Mo [1 ]
Herbert, Sylvia L. [1 ]
Vashishtha, Mahesh S. [1 ]
Bansal, Somil [1 ]
Tomlin, Claire J. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Autonomous systems; computational efficiency; control theory; reachability analysis; scalability; system verification; ELLIPSOIDAL TECHNIQUES; MODELS;
D O I
10.1109/TAC.2018.2797194
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reachability analysis provides formal guarantees for performance and safety properties of nonlinear control systems. Here, one aims to compute the backward reachable set (BPS) or tube (BRT)-the set of states from which the system can be driven into a target set at a particular time or within a time interval, respectively. The computational complexity of current approaches scales poorly, making application to high-dimensional systems intractable. We propose a technique that decomposes the dynamics of a general class of nonlinear systems into subsystems which may be coupled through common states, controls, and disturbances. Despite this coupling, BRSs and BRTs can be computed efficiently using our technique without incurring additional approximation errors and without the need for linearizing dynamics or approximating sets as polytopes. Computations of BRSs and BRTs now become orders of magnitude faster, and for the first time BRSs and BRTs for many high-dimensional nonlinear control systems can be computed using the Hamilton-Jacobi formulation. In situations involving bounded adversarial disturbances, our proposed method can obtain slightly conservative results. We demonstrate our theory by numerically computing BRSs and BRTs for several systems, including the six-dimensional Acrobatic Quadrotor using the HJ formulation.
引用
收藏
页码:3675 / 3688
页数:14
相关论文
共 39 条