NUMERICAL INVESTIGATION OF NANOFLUID FLOW AND HEAT TRANSFER IN A PLATE HEAT EXCHANGER

被引:0
作者
Gherasim, Iulian [1 ]
Galanis, Nicolas [2 ]
Cong Tam Nguyen [3 ]
机构
[1] Tech Univ Gheorghe Asachi, Fac Civil Engn & Bldg Serv, Dept Bldg Serv, Iasi 700050, Romania
[2] Univ Sherbrooke, Fac Engn, Sherbrooke, PQ J1R 2R1, Canada
[3] Univ Moncton, Fac Engn, Moncton, NB E1A 3E9, Canada
来源
PROCEEDINGS OF CHT-12 - ICHMT INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER | 2012年
关键词
VISCOSITY DATA; FLUID-FLOW; TEMPERATURE; HYSTERESIS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a numerical investigation of the flow and heat transfer behavior of two nanofluids, namely CuO-water and Al2O3-water, inside a plate heat exchanger. Both laminar and turbulent flows are studied under steady state conditions. In the turbulent regime the RANSbased Realizable kappa-epsilon turbulence model was used. The homogeneous single-phase fluid model was employed to characterize the nanofluids. All fluid properties were considered temperature dependent. The adopted unstructured mesh possesses approximately 9.63x10(6) elements and was used for both laminar and turbulent flows. Results show that a considerable heat transfer enhancement was achieved using these nanofluids and the energy-based performance comparisons indicate that some of them do represent a more efficient heat transfer medium for this type of application. In general, all nanofluids cause higher pressure losses due to friction compared to that of water.
引用
收藏
页码:837 / 854
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 2006, FLUENT 6 3 US MAN
[2]  
[Anonymous], 2001, HDB FUNDAMENTALS
[3]  
Bigoin G., 2002, ADV COMPUTATIONAL ME, V3, P507
[4]   Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement -: art. no. 153107 [J].
Chon, CH ;
Kihm, KD ;
Lee, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2005, 87 (15) :1-3
[5]  
Cotta RM, 2006, Handbook of numerical heat transfer, V2nd
[6]   Numerical analysis of forced convection in plate and frame heat exchangers [J].
Croce, G ;
D'Agaro, P .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2002, 12 (06) :756-771
[7]   Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions [J].
Ferrouillat, Sebastien ;
Bontemps, Andre ;
Ribeiro, Joao-Paulo ;
Gruss, Jean-Antoine ;
Soriano, Olivier .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (02) :424-439
[8]   THE EFFECT OF THE CORRUGATION INCLINATION ANGLE ON THE THERMOHYDRAULIC PERFORMANCE OF PLATE HEAT-EXCHANGERS [J].
FOCKE, WW ;
ZACHARIADES, J ;
OLIVIER, I .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1985, 28 (08) :1469-1479
[9]   Experimental and numerical heat transfer in a plate heat exchanger [J].
Galeazzo, Flavio C. C. ;
Miura, Raquel Y. ;
Gut, Jorge A. W. ;
Tadini, Carmen C. .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (21) :7133-7138
[10]   Effects of smooth longitudinal passages and port configuration on the flow and thermal fields in a plate heat exchanger [J].
Gherasim, Iulian ;
Galanis, Nicolas ;
Cong Tam Nguyen .
APPLIED THERMAL ENGINEERING, 2011, 31 (17-18) :4113-4124