Special values of elliptic functions at points of the divisors of Jacobi forms

被引:4
作者
Choie, YJ [1 ]
Kohnen, W
机构
[1] Pohang Inst Sci & Technol, Dept Math, Pohang 790784, South Korea
[2] Univ Heidelberg, Inst Math, INF 288, D-69120 Heidelberg, Germany
关键词
D O I
10.1090/S0002-9939-03-06945-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of the paper gives an explicit formula for the sum of the values of even order derivatives with respect to z of the Weierstrass p-function p(tau, z) for the lattice Ztau + Z ( where tau is in the upper half-plane) extended over the points in the divisor of phi(tau; .) (where phi(tau, z) is a meromorphic Jacobi form) in terms of the coefficients of the Laurent expansion of phi(tau, z) around z = 0.
引用
收藏
页码:3309 / 3317
页数:9
相关论文
共 10 条
[1]  
BERNDT R, 1981, J REINE ANGEW MATH, V326, P79
[2]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[3]  
BRUINIER JH, IN PRESS COMPOS MATH
[4]   Product expansions of conformal characters [J].
Eholzer, W ;
Skoruppa, NP .
PHYSICS LETTERS B, 1996, 388 (01) :82-89
[5]  
Eichler M., 1985, The theory of Jacobi forms
[6]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES [J].
GROSS, BH ;
ZAGIER, DB .
INVENTIONES MATHEMATICAE, 1986, 84 (02) :225-320
[7]  
GROSS BH, 1985, J REINE ANGEW MATH, V355, P191
[8]  
Katz N. M., 1973, Lecture Notes in Math., V350, P69
[9]  
Lang S., 1973, ELLIPTIC FUNCTIONS
[10]  
ZAGIER D, 2000, TRACES SINGULAR MODU