THE REGULARITY OF SOLUTIONS TO SOME VARIATIONAL PROBLEMS, INCLUDING THE p-LAPLACE EQUATION FOR 2 ≤ p < 3

被引:17
作者
Cellina, Arrigo [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 53, I-20125 Milan, Italy
关键词
Regularity of solutions to variational problems; p-harmonic functions; higher differentiability; ELLIPTIC-EQUATIONS; HARMONIC FUNCTIONS; SYSTEMS; DOMAINS;
D O I
10.1051/cocv/2016064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the higher differentiability of solutions to the problem of minimizing integral(Omega)[L del u(x)) + g(x,v(x))]dx on u(0) + W-0(1,p)(Omega) where L(xi) = (l)(vertical bar xi vertical bar) = 1/p vertical bar xi vertical bar(p) and u(0) is an element of W-1,W-p(Omega). We show that, for 2 <= p < 3, under suitable regularity assumptions on g, there exists a solution u to the Euler- Lagrange equation associated to the minimization problem, such that del u is an element of W-loc(1,2)(Omega). In particular, for g(x, u) = f(x) u with f is an element of W-1,W-2(Omega) and 2 <= p < 3, any W-1,W-p(Omega) weak solution to the equation div(vertical bar del u vertical bar(p-2)del u) = f is in W-loc(2,2) (Omega).
引用
收藏
页码:1543 / 1553
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1994, Metodi diretti nel Calcolo delle Variazioni
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]   Estimates for solutions to equations of p-Laplace type in Ahlfors regular NTA-domains [J].
Avelin, Benny ;
Nystrom, Kaj .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) :5955-6005
[4]   A regularity classification of boundary points for p-harmonic functions and quasiminimizers [J].
Bjorn, Anders .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :39-47
[5]   Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results [J].
Damascelli, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04) :493-516
[6]  
Dancer EN, 2015, POSITIVITY, V19, P577, DOI 10.1007/s11117-014-0316-2
[7]   A PRIORI ESTIMATES FOR A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS [J].
Daners, Daniel ;
Drabek, Pavel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6475-6500
[8]  
Esposito L., 1998, REV MAT COMPLUT, V11, P203
[9]   SOME REGULARITY RESULTS FOR QUASILINEAR ELLIPTIC SYSTEMS OF SECOND-ORDER [J].
HILDEBRANDT, S ;
WIDMAN, KO .
MATHEMATISCHE ZEITSCHRIFT, 1975, 142 (01) :67-86
[10]   Guide to nonlinear potential estimates [J].
Kuusi, Tuomo ;
Mingione, Giuseppe .
BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (01) :1-82