Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington's Disease

被引:3
作者
Zlebnik, Natalie E. [1 ]
Gildish, Iness [1 ]
Sesia, Thibaut [2 ]
Fitoussi, Aurelie [1 ]
Cole, Ellen A. [1 ]
Carson, Brian P. [1 ]
Cachope, Roger [1 ,3 ]
Cheer, Joseph F. [1 ,4 ]
机构
[1] Univ Maryland, Dept Anat & Neurobiol, Sch Med, 20 Penn St, Baltimore, MD 21201 USA
[2] Univ Hosp Cologne, Dept Stereotaxy & Funct Neurosurg, Kerpener Str 62, D-50937 Cologne, Germany
[3] CHDI Fdn, 6080 Ctr Dr,Suite 700, Los Angeles, CA 90045 USA
[4] Univ Maryland, Dept Psychiat, Sch Med, 20 Penn St, Baltimore, MD 21201 USA
基金
美国国家卫生研究院;
关键词
corticostriatal; Huntington's disease; motivation; nucleus accumbens; prefrontal cortex; PREFRONTAL CORTEX; NUCLEUS-ACCUMBENS; MOUSE MODEL; FUNCTIONAL CONNECTIVITY; CORTICOSTRIATAL PATHWAY; DEPENDENT ALTERATIONS; MUTANT HUNTINGTIN; VENTRAL STRIATUM; APATHY; ATROPHY;
D O I
10.1093/cercor/bhz009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuropsychiatric symptoms, such as avolition, apathy, and anhedonia, precede the onset of debilitating motor symptoms in Huntington's disease (HD), and their development may give insight into early disease progression and treatment. However, the neuronal and circuit mechanisms of premanifest HD pathophysiology are not well-understood. Here, using a transgenic rat model expressing the full-length human mutant HD gene, we find early and profound deficits in reward motivation in the absence of gross motor abnormalities. These deficits are accompanied by significant and progressive dysfunction in corticostriatal processing and communication among brain areas critical for reward-driven behavior. Together, our results define early corticostriatal dysfunction as a possible pathogenic contributor to psychiatric disturbances and may help identify potential pharmacotherapeutic targets for the treatment of HD.
引用
收藏
页码:4763 / 4774
页数:12
相关论文
共 71 条
[1]  
Abada YSK, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0068584, 10.1371/journal.pone.0071633]
[2]  
Abeles M., 1991, CORTICONICS NEURAL C
[3]   Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis [J].
Akwei-Sekyere, Samuel .
PEERJ, 2015, 3
[4]   Functional connectivity in apathy of late-life depression: A preliminary study [J].
Alexopoulos, George S. ;
Hoptman, Matthew J. ;
Yuen, Genevieve ;
Kanellopoulos, Dora ;
Seirup, Joanna K. ;
Lim, Kelvin O. ;
Gunning, Faith M. .
JOURNAL OF AFFECTIVE DISORDERS, 2013, 149 (1-3) :398-405
[5]   Differential Electrophysiological Changes in Striatal Output Neurons in Huntington's Disease [J].
Andre, Veronique M. ;
Cepeda, Carlos ;
Fisher, Yvette E. ;
Huynh, My ;
Bardakjian, Nora ;
Singh, Sumedha ;
Yang, X. William ;
Levine, Michael S. .
JOURNAL OF NEUROSCIENCE, 2011, 31 (04) :1170-1182
[6]   A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement [J].
Arnold, JM ;
Roberts, DCS .
PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 1997, 57 (03) :441-447
[7]   Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs [J].
Berke, J. D. .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2009, 30 (05) :848-859
[8]   Pharmacologic Treatment of Apathy in Dementia [J].
Berman, Karen ;
Brodaty, Henry ;
Withall, Adrienne ;
Seeher, Katrin .
AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2012, 20 (02) :104-122
[9]   Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens [J].
Britt, Jonathan P. ;
Benaliouad, Faiza ;
McDevitt, Ross A. ;
Stuber, Garret D. ;
Wise, Roy A. ;
Bonci, Antonello .
NEURON, 2012, 76 (04) :790-803
[10]   Corticostriatal Dysfunction in Huntington's Disease: The Basics [J].
Bunner, Kendra D. ;
Rebec, George V. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2016, 10