A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images

被引:154
作者
Dhara, Ashis Kumar [1 ]
Mukhopadhyay, Sudipta [1 ]
Dutta, Anirvan [2 ]
Garg, Mandeep [3 ]
Khandelwal, Niranjan [3 ]
机构
[1] Indian Inst Technol, Elect & Elect Commun Engn, Kharagpur 721302, W Bengal, India
[2] Birla Inst Technol Mesra, Elect & Commun Engn, Ranchi 835215, Bihar, India
[3] Post Grad Inst Med Educ & Res, Dept Radio Diag & Imaging, Chandigarh 160012, India
关键词
CT images; Lung cancer; Pulmonary nodules; Segmentation of nodules; Feature extraction; Features selection; Classification of benign and malignant nodules; COMPUTER-AIDED DIAGNOSIS; HIGH-RESOLUTION CT; DIFFERENTIATING BENIGN; SEGMENTATION; CANCER;
D O I
10.1007/s10278-015-9857-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Classification of malignant and benign pulmonary nodules is important for further treatment plan. The present work focuses on the classification of benign and malignant pulmonary nodules using support vector machine. The pulmonary nodules are segmented using a semi-automated technique, which requires only a seed point from the end user. Several shape-based, margin-based, and texture-based features are computed to represent the pulmonary nodules. A set of relevant features is determined for the efficient representation of nodules in the feature space. The proposed classification scheme is validated on a data set of 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative public database. The proposed classification scheme is evaluated for three configurations such as configuration 1 (composite rank of malignancy "1" and "2" as benign and "4" and "5" as malignant), configuration 2 (composite rank of malignancy "1","2", and "3" as benign and "4" and "5" as malignant), and configuration 3 (composite rank of malignancy "1" and "2" as benign and "3","4" and "5" as malignant). The performance of the classification is evaluated in terms of area (A (z)) under the receiver operating characteristic curve. The A (z) achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 0.9505, 0.8822, and 0.8488, respectively. The proposed method outperforms the most recent technique, which depends on the manual segmentation of pulmonary nodules by a trained radiologist.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2011, P INT C IM INF PROC
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Automated lung nodule classification following automated nodule detection on CT: A serial approach [J].
Armato, SG ;
Altman, MB ;
Wilkie, J ;
Sone, S ;
Li, F ;
Doi, K ;
Roy, AS .
MEDICAL PHYSICS, 2003, 30 (06) :1188-1197
[4]   Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society [J].
Austin, JHM ;
Muller, NL ;
Friedman, PJ ;
Hansell, DM ;
Naidich, DP ;
RemyJardin, M ;
Webb, WR ;
Zerhouni, EA .
RADIOLOGY, 1996, 200 (02) :327-331
[5]   Human detection using oriented histograms of flow and appearance [J].
Dalal, Navneet ;
Triggs, Bill ;
Schmid, Cordelia .
COMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGS, 2006, 3952 :428-441
[6]  
Dasovich GM, 2010, P SPIE MED IMAGING, p[762, 431, 431]
[7]   Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images [J].
Dhara, Ashis Kumar ;
Mukhopadhyay, Sudipta ;
Saha, Pramit ;
Garg, Mandeep ;
Khandelwal, Niranjan .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (03) :337-349
[8]   A Segmentation Framework of Pulmonary Nodules in Lung CT Images (vol 29, pg 86, 2016) [J].
Dhara, Ashis Kumar ;
Mukhopadhyay, Sudipta ;
Das Gupta, Rahul ;
Garg, Mandeep ;
Khandelwal, Niranjan .
JOURNAL OF DIGITAL IMAGING, 2016, 29 (01) :148-148
[9]   Screening for early lung cancer with low-dose spiral CT: Prevalence in 817 asymptomatic smokers [J].
Diederich, S ;
Wormanns, D ;
Semik, M ;
Thomas, M ;
Lenzen, H ;
Roos, N ;
Heindel, W .
RADIOLOGY, 2002, 222 (03) :773-781
[10]  
El-Baz A, 2011, I S BIOMED IMAGING, P137, DOI 10.1109/ISBI.2011.5872373