Tracer-Encapsulated Solid Pellet (TESPEL) injection system for Wendelstein 7-X

被引:17
作者
Bussiahn, R. [1 ]
Tamura, N. [2 ,3 ]
McCarthy, K. J. [4 ]
Burhenn, R. [1 ]
Hayashi, H. [2 ]
Laube, R. [1 ]
Klinger, T. [1 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu, Japan
[3] SOKENDAI Grad Univ Adv Studies, Toki, Gifu, Japan
[4] Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain
关键词
PHYSICS;
D O I
10.1063/1.5038844
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Impurity confinement in fusion plasmas is mainly determined by transport mechanisms in the core region. For the Wendelstein 7-X stellarator, its island divertor is expected to screen effectively external impurity sources in the scrape-off layer at higher densities. However, the unique feature of Tracer-Encapsulated Solid Pellet (TESPEL) injection, releasing impurities at a well-localized radial position directly in the core plasma, enables investigating such transport mechanisms. This paper reports on the detailed design of a completely new TESPEL injection system, which has been designed by the National Institute for Fusion Science, Toki, Japan, and is currently being installed at Max-Planck-Institut fur Plasmaphysik, Greifswald, Germany, for the Wendelstein 7-X. This injector consists of a storage and injection unit, attached to a system of guiding tubes which run through 3 successive differential pumping stages. A light-gate system and an optical observation system are used to determine the location of the deposited tracers. Laboratory tests carried out by shooting TESPELs onto a sample foil showed good performance after careful realignment of the guiding tubes.
引用
收藏
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1993, J PLASMA FUSION RES
[2]  
[Anonymous], 2011, PHYS PLASMAS, V18
[3]   Electron cyclotron heating for W7-X: Physics and technology [J].
Erckmann, V. ;
Brand, P. ;
Braune, H. ;
Dammertz, G. ;
Gantenbein, G. ;
Kasparek, W. ;
Laqua, H. P. ;
Maassberg, H. ;
Marushchenko, N. B. ;
Michel, G. ;
Thumm, M. ;
Turkin, Y. ;
Weissgerber, M. ;
Weller, A. .
FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (02) :291-312
[4]   Production and acceleration of tracer encapsulated solid pellets for particle transport diagnostics [J].
Khlopenkov, KV ;
Sudo, S .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (09) :3194-3198
[5]   Overview video diagnostics for the W7-X stellarator [J].
Kocsis, G. ;
Baross, T. ;
Biedermann, C. ;
Bodnar, G. ;
Cseh, G. ;
Ilkei, T. ;
Koenig, R. ;
Otte, M. ;
Szabolics, T. ;
Szepesi, T. ;
Zoletnik, S. .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :808-811
[6]   Comparison of cryogenic (hydrogen) and TESPEL (polystyrene) pellet particle deposition in a magnetically confined plasma [J].
McCarthy, K. J. ;
Tamura, N. ;
Combs, S. K. ;
Panadero, N. ;
Ascabibar, E. ;
Estrada, T. ;
Garcia, R. ;
Hernandez Sanchez, J. ;
Lopez Fraguas, A. ;
Navarro, M. ;
Pastor, I. ;
Soleto, A. .
EPL, 2017, 120 (02)
[7]   INFLUENCE OF MAGNETIC-FIELDS ON A LARGE-SIZED TURBOMOLECULAR PUMP [J].
NISHIDE, A ;
KANETO, S ;
IKEGAMI, T ;
SAKAMOTO, Y .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1982, 20 (04) :1105-1108
[8]   Confinement physics study in a small low aspect ratio helical device: CHS [J].
Okamura, S ;
Matsuoka, K ;
Akiyama, R ;
Darrow, DS ;
Ejiri, A ;
Fujisawa, A ;
Fujiwara, M ;
Goto, M ;
Ida, K ;
Idei, H ;
Iguchi, H ;
Inoue, N ;
Isobe, M ;
Itoh, K ;
Kado, S ;
Khlopenkov, K ;
Kondo, T ;
Kubo, S ;
Lazaros, A ;
Lee, S ;
Matsunaga, G ;
Minami, T ;
Morita, S ;
Murakami, S ;
Nakajima, N ;
Nikai, N ;
Nishimura, S ;
Nomura, I ;
Ohdachi, S ;
Ohkuni, K ;
Osakabe, M ;
Pavlichenko, R ;
Peterson, BJ ;
Sakamoto, R ;
Sanuki, H ;
Sasao, M ;
Shimizu, A ;
Shirai, Y ;
Sudo, S ;
Takagi, S ;
Takahashi, C ;
Takayama, S ;
Takechi, M ;
Tanaka, K ;
Toi, K ;
Watari, T ;
Yamazaki, K ;
Yokoyama, M ;
Yoshimura, Y .
NUCLEAR FUSION, 1999, 39 (9Y) :1337-1350
[9]   The Thomson scattering system at Wendelstein 7-X [J].
Pasch, E. ;
Beurskens, M. N. A. ;
Bozhenkov, S. A. ;
Fuchert, G. ;
Knauer, J. ;
Wolf, R. C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[10]  
Payling, 2000, OPTICAL OPTICAL EMIS