Necessary conditions of asymptotic stability for unilateral dynamical systems

被引:13
作者
Goeleven, D
Brogliato, B
机构
[1] INRIA Rhones Alpes, ZIRST, BipOp Project, F-38334 Saint Ismier, France
[2] Univ La Reunion, IREMIA, F-97400 Saint Denis, France
关键词
variational inequalities; differential inclusions; topological degree; stability theory for unilateral dynamical systems;
D O I
10.1016/j.na.2005.01.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a mathematical tool that can be used to state necessary conditions of asymptotic stability of isolated stationary solutions of a class of unilateral dynamical systems. More precisely, nonlinear evolution variational inequalities are considered. Instability criteria are also given. Applications can be found in mechanics or electrical circuits. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:961 / 1004
页数:44
相关论文
共 34 条
[1]   A stability theory for second-order nonsmooth dynamical systems with application to friction problems [J].
Adly, S ;
Goeleven, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :17-51
[2]  
[Anonymous], 1997, MATH SURVEYS MONOGRA, DOI DOI 10.1090/SURV/049
[3]  
[Anonymous], 1973, EQUATIONS DIFFERENTI
[4]  
BELLMAN R, 1973, INTRO MATRIX ANAL
[5]  
BREZIS H, 1972, J MATH PURE APPL, V51, P1
[6]   Some results on the controllability of planar variational inequalities [J].
Brogliato, B .
SYSTEMS & CONTROL LETTERS, 2005, 54 (01) :65-71
[7]   Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings [J].
Brogliato, B .
SYSTEMS & CONTROL LETTERS, 2004, 51 (05) :343-353
[8]   Some perspectives on the analysis and control of complementarity systems [J].
Brogliato, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :918-935
[9]  
BROGLIATO B, 2004, MATH CONTROL SIGNALS
[10]  
Brogliato B., 1999, NONSMOOTH MECH