Weak completeness of resolution in a linguistic truth-valued propositional logic

被引:0
作者
Xu, Yang [1 ]
Chen, Shuwei [2 ]
Liu, Jun [3 ]
Ruan, Da [4 ]
机构
[1] Southwest Jiaotong Univ, Dept Math, Chengdu 610031, Peoples R China
[2] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China
[3] Univ Ulster, Fac Engn, Sch Comp & Math, Newtownabbey BT37 0QB, North Ireland
[4] CEN SCK, Belgian Nucl Res Ctr, B-2400 Mol, Belgium
来源
THEORETICAL ADVANCES AND APPLICATIONS OF FUZZY LOGIC AND SOFT COMPUTING | 2007年 / 42卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the present paper, the weak completeness of alpha-resolution principle for a latticevalued logic (L(n)xL(2))P(X) with truth value in a logical algebra - lattice implication algebra L(n)xL(2), is established. Accordingly, the weak completeness of (Exactly, True)-resolution principle for a linguistic truth-valued propositional logic l based on the linguistic truth-valued lattice implication algebra L-LIA is derived.
引用
收藏
页码:358 / +
页数:3
相关论文
共 16 条
[1]  
[Anonymous], 2003, STUD FUZZINESS SOFT
[2]  
Chen SW, 2005, LECT NOTES ARTIF INT, V3613, P276
[3]   A 2-tuple fuzzy linguistic representation model for computing with words [J].
Herrera, F ;
Martínez, L .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (06) :746-752
[4]  
HO NC, 1990, FUZZY SET SYST, V35, P281, DOI 10.1016/0165-0114(90)90002-N
[5]   EXTENDED HEDGE ALGEBRAS AND THEIR APPLICATION TO FUZZY-LOGIC [J].
HO, NC ;
WECHLER, W .
FUZZY SETS AND SYSTEMS, 1992, 52 (03) :259-281
[6]  
Liu J, 2005, 2005 IEEE International Conference on Granular Computing, Vols 1 and 2, P199
[7]   Fuzzy logic from the viewpoint of machine intelligence [J].
Ma, J ;
Chen, S ;
Xu, Y .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :628-634
[8]   Are fuzzy sets a reasonable tool for modeling vague phenomena? [J].
Novák, V .
FUZZY SETS AND SYSTEMS, 2005, 156 (03) :341-348
[9]  
Novak V., 1999, MATH PRINCIPLES FUZZ, DOI DOI 10.1007/978-1-4615-5217-8
[10]  
PEI Z, 2004, P 6 INT FLINS C, P93