Charge diffusion in the one-dimensional Hubbard model

被引:16
作者
Steinigeweg, R. [1 ]
Jin, F. [2 ]
De Raedt, H. [3 ]
Michielsen, K. [2 ,4 ]
Gemmer, J. [1 ]
机构
[1] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, Inst Adv Simulat, D-52425 Julich, Germany
[3] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[4] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
关键词
DRUDE WEIGHT; TRANSPORT; CHAIN;
D O I
10.1103/PhysRevE.96.020105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.
引用
收藏
页数:5
相关论文
共 50 条
[1]   Transient fluctuation theorem in closed quantum systems [J].
Bartsch, C. ;
Gemmer, J. .
EPL, 2011, 96 (06)
[2]   Dynamical Typicality of Quantum Expectation Values [J].
Bartsch, Christian ;
Gemmer, Jochen .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[3]  
Benz J, 2005, J PHYS SOC JPN, V74
[4]   Zero finite-temperature charge stiffness within the half-filled 1D Hubbard model [J].
Carmelo, J. M. P. ;
Gu, Shi-Jian ;
Sacramento, P. D. .
ANNALS OF PHYSICS, 2013, 339 :484-509
[5]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362
[6]   Regression Relation for Pure Quantum States and Its Implications for Efficient Computing [J].
Elsayed, Tarek A. ;
Fine, Boris V. .
PHYSICAL REVIEW LETTERS, 2013, 110 (07)
[7]   Exact Drude weight for the one-dimensional Hubbard model at finite temperatures [J].
Fujimoto, S ;
Kawakami, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :465-474
[8]   Distribution of local entropy in the Hilbert space of bi-partite quantum systems: origin of Jaynes' principle [J].
Gemmer, J ;
Mahler, G .
EUROPEAN PHYSICAL JOURNAL B, 2003, 31 (02) :249-257
[9]   Canonical typicality [J].
Goldstein, S ;
Lebowitz, JL ;
Tumulka, R ;
Zanghì, N .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[10]   Fast algorithm for finding the eigenvalue distribution of very large matrices [J].
Hams, A ;
De Raedt, H .
PHYSICAL REVIEW E, 2000, 62 (03) :4365-4377