Superpixel-guided multiscale kernel collaborative representation for hyperspectral image classification

被引:8
作者
Liu, Jianjun [1 ,2 ]
Xiao, Zhiyong [1 ]
Xiao, Liang [2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ, Nanjing, Jiangsu, Peoples R China
关键词
SPARSE REPRESENTATION;
D O I
10.1080/2150704X.2016.1207257
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This article presents a superpixel-guided multiscale kernel collaborative representation method for robust classification of hyperspectral images. This novel method first exploits the spatial multiscale information of hyperspectral images by extending a superpixel segmentation algorithm, and then proposes a spatial-spectral information fusion technique to encode the spatial multiscale similarities and the spectral similarities between the pixels in the framework of kernel collaborative representation classification. The advantages of it mainly consist in (1) avoiding choosing empirical parameters in the spatial feature extraction process of superpixels and (2) enhanced classification accuracy as compared to traditional spatial-spectral kernel techniques. Experimental results with two widely used hyperspectral images demonstrate the effectiveness of the proposed method.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 17 条
[1]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[2]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[3]   Extended profiles with morphological attribute filters for the analysis of hyperspectral data [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) :5975-5991
[4]   Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels [J].
Fang, Leyuan ;
Li, Shutao ;
Duan, Wuhui ;
Ren, Jinchang ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12) :6663-6674
[5]   Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels [J].
Feng, Jilan ;
Cao, Zongjie ;
Pi, Yiming .
REMOTE SENSING, 2014, 6 (08) :7158-7181
[6]   High-resolution urban land-cover classification using a competitive multi-scale object-based approach [J].
Johnson, Brian A. .
REMOTE SENSING LETTERS, 2013, 4 (02) :131-140
[7]   Generalized Composite Kernel Framework for Hyperspectral Image Classification [J].
Li, Jun ;
Marpu, Prashanth Reddy ;
Plaza, Antonio ;
Bioucas-Dias, Jose M. ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (09) :4816-4829
[8]   Kernel Collaborative Representation With Tikhonov Regularization for Hyperspectral Image Classification [J].
Li, Wei ;
Du, Qian ;
Xiong, Mingming .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (01) :48-52
[9]   Probabilistic-Kernel Collaborative Representation for Spatial-Spectral Hyperspectral Image Classification [J].
Liu, Jianjun ;
Wu, Zebin ;
Li, Jun ;
Plaza, Antonio ;
Yuan, Yunhao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04) :2371-2384
[10]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790