Phase behavior analysis of MgO-C refractory at high temperature: Influence of Si powder additives

被引:16
作者
Liu, Haitao [1 ]
Meng, Fanrong [2 ,3 ]
Li, Qing [2 ,3 ]
Huang, Zhaohui [1 ]
Fang, Minghao [1 ]
Liu, Yan-gai [1 ]
Wu, Xiaowen [1 ]
机构
[1] China Univ Geosci, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
[2] Aviat Gen Hosp, Dept Stomatol, Beijing 100012, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Life Sci, Beijing 100101, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
MgO-C refractory; Phase transformation; beta-SiC; Nanowires; Vapor-solid process; THERMAL EVAPORATION; OXIDATION BEHAVIOR; NANOWIRES; BRICKS; CARBON; MECHANISM; COMPOSITES; SLAG; AL; ANTIOXIDANTS;
D O I
10.1016/j.ceramint.2014.12.029
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phase changes of Si powder in the MgO-C refractory were investigated in a reducing atmosphere system at 1500 degrees C. The phase compositions, morphology and microstructures of the products were determined using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (FIRTEM) and energy dispersive spectroscopy (EDS). beta-SiC nanowires were synthesized in the pores of MgO-C bricks without the assistance of catalysis. The synthesized nanowires were typically a few hundred nanometers to several micrometers in length. The formation process was governed by VS mechanism. The formed beta-SiC nanowires may help to reinforce the mechanical properties and enhance the antioxidation properties of MgO-C bricks. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:5186 / 5190
页数:5
相关论文
共 28 条
[1]   Functional refractory material design for advanced thermal shock performance due to titania additions [J].
Aneziris, C. G. ;
Klippel, U. ;
Schaerfl, W. ;
Stein, V. ;
Li, Yawei .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2007, 4 (06) :481-489
[2]   Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions [J].
Aneziris, C. G. ;
Hubalkova, J. ;
Barabas, R. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (01) :73-78
[3]   Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant [J].
Chen, Kai ;
Huang, Zhaohui ;
Huang, Juntong ;
Fang, Minghao ;
Liu, Yan-gai ;
Ji, Haipeng ;
Yin, Li .
CERAMICS INTERNATIONAL, 2013, 39 (02) :1957-1962
[4]   Recycling MgO-C refractory in electric arc furnaces [J].
Conejo, A. N. ;
Lule, R. G. ;
Lopez, F. ;
Rodriguez, R. .
RESOURCES CONSERVATION AND RECYCLING, 2006, 49 (01) :14-31
[5]   Direct mineralogical composition of a MgO-C refractory material obtained by Rietveld methodology [J].
De la Torre, Angeles G. ;
Valle, Francisco Jose ;
De Aza, Antonio H. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (13) :2587-2592
[6]   Oxidation kinetics of MgO-C refractory bricks [J].
Faghihi-Sani, MA ;
Yamaguchi, A .
CERAMICS INTERNATIONAL, 2002, 28 (08) :835-839
[7]   Refractory diborides of zirconium and hafnium [J].
Fahrenholtz, William G. ;
Hilmas, Gregory E. ;
Talmy, Inna G. ;
Zaykoski, James A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (05) :1347-1364
[8]   An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories [J].
Ganesh, I ;
Bhattacharjee, S ;
Saha, BP ;
Johnson, R ;
Rajeshwari, K ;
Sengupta, R ;
Rao, MVR ;
Mahajan, YR .
CERAMICS INTERNATIONAL, 2002, 28 (03) :245-253
[9]   Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: A first principles study [J].
Gautam, G. Sai ;
Kumar, K. C. Hari .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 587 :380-386
[10]   The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks [J].
Gokce, A. S. ;
Gurcan, C. ;
Ozgen, S. ;
Aydin, S. .
CERAMICS INTERNATIONAL, 2008, 34 (02) :323-330