Regional scale soil moisture content estimation based on multi-source remote sensing parameters

被引:28
作者
Ainiwaer, Mireguli [1 ,2 ]
Ding, Jianli [1 ,2 ]
Kasim, Nijat [1 ,2 ]
Wang, Jingzhe [1 ,2 ]
Wang, Jinjie [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Resources & Environm Sci, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Minist Educ, Key Lab Oasis Ecol, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRICAL-RESISTIVITY TOMOGRAPHY; WATER CONTENT; ORGANIC-MATTER; REFLECTANCE SPECTROSCOPY; SPECTRAL REFLECTANCE; METHODS PLSR; VEGETATION; VALIDATION; CHINA; MODEL;
D O I
10.1080/01431161.2019.1701723
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Soil moisture content (SMC) is a basic condition for crop growth, and a key parameter for crop yield prediction and drought monitoring. An advantage of large-scale synchronous observation using remote sensing technology is that it provides the possibility of dynamic monitoring of soil moisture content in a large area. This study aimed to explore the feasibility of accurately estimating soil moisture content at a regional scale by combining ground hyper-spectral data with multispectral remote sensing (Sentinel-2) data. The results showed that the different mathematical transformations increased the correlation between soil spectral reflectance and SMC to varying degrees. Hyper-spectral optimized index normalized difference index (NDI) ((B-769 similar to 797 - B-848 similar to 881/B-769 similar to 797 + B-848 similar to 881); (B-842 - B-740/B-842 + B-740)) derived from the transformed reflectance (the first-order derivate of reciprocal-logarithm (Log (1/R))', second-order derivate of reciprocal-logarithm (Log (1/R)) '') showed significant correlation (correlation coefficient (r) = 0.61; r = 0.47) with SMC, and the correlation coefficient values higher than difference index (DI) and ratio index (RI). From the performance of 12 prediction models which were taken optimized indices as independent variables, the central wavelength reflectance model (Log (1/R))'' and the average wavelength reflectance model ((Log (1/R)) ' presented higher validation coefficients (coefficient of determination (R-2) = 0.61, root mean square error (RMSE) = 4.09%, residual prediction deviation (RPD) = 1.82; R-2 = 0.69, RMSE = 3.48%, RPD = 1.91) compared with other models. When verifying the accuracy, the model yields R-2 values of 0.619 and 0.701. These results indicated that the two-band hyper-spectral optimized indices (NDI) as an optimal indicator for quickly and accurately soil moisture content estimation. Combining the ground hyper-spectral data and satellite remote sensing image regional scale soil moisture content prediction provides a scientific reference for land-space integrated soil moisture content remote sensing monitoring.
引用
收藏
页码:3346 / 3367
页数:22
相关论文
共 50 条
  • [41] Flood Disaster Monitoring and Emergency Assessment Based on Multi-Source Remote Sensing Observations
    Lei, Tianjie
    Wang, Jiabao
    Li, Xiangyu
    Wang, Weiwei
    Shao, Changliang
    Liu, Baoyin
    WATER, 2022, 14 (14)
  • [42] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    Lu Tianqi
    Chen Shengbo
    Tu Yuan
    Yu Yan
    Cao Yijing
    Jiang Deyang
    CHINESE GEOGRAPHICAL SCIENCE, 2019, 29 (02) : 192 - 201
  • [43] Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data
    Shi, Wei
    Chen, Guan
    Meng, Xingmin
    Bian, Shiqiang
    Jin, Jiacheng
    Wu, Jie
    Huang, Fengchun
    Chong, Yan
    REMOTE SENSING, 2023, 15 (19)
  • [44] Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning
    Senanayake, I. P.
    Yeo, I. -Y.
    Walker, J. P.
    Willgoose, G. R.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 776
  • [45] Surface Soil Moisture Retrieval of China Using Multi-Source Data and Ensemble Learning
    Yang, Zhangjian
    He, Qisheng
    Miao, Shuqi
    Wei, Feng
    Yu, Mingxiao
    REMOTE SENSING, 2023, 15 (11)
  • [46] Estimation of soil moisture in drip-irrigated citrus orchards using multi-modal UAV remote sensing
    Wu, Zongjun
    Cui, Ningbo
    Zhang, Wenjiang
    Yang, Yenan
    Gong, Daozhi
    Liu, Quanshan
    Zhao, Lu
    Xing, Liwen
    He, Qingyan
    Zhu, Shidan
    Zheng, Shunsheng
    Wen, Shenglin
    Zhu, Bin
    AGRICULTURAL WATER MANAGEMENT, 2024, 302
  • [47] Drought Monitoring and Performance Evaluation Based on Machine Learning Fusion of Multi-Source Remote Sensing Drought Factors
    Zhao, Yangyang
    Zhang, Jiahua
    Bai, Yun
    Zhang, Sha
    Yang, Shanshan
    Henchiri, Malak
    Seka, Ayalkibet Mekonnen
    Nanzad, Lkhagvadorj
    REMOTE SENSING, 2022, 14 (24)
  • [48] The Evolution of the Urban Spatial Pattern in the Yangtze River Economic Belt: Based on Multi-Source Remote Sensing Data
    Li, Yang
    Shao, Hua
    Jiang, Nan
    Shi, Ge
    Cheng, Xin
    SUSTAINABILITY, 2018, 10 (08)
  • [49] Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods
    Yang, Yujie
    Wang, Zhige
    Cao, Chunxiang
    Xu, Min
    Yang, Xinwei
    Wang, Kaimin
    Guo, Heyi
    Gao, Xiaotong
    Li, Jingbo
    Shi, Zhou
    REMOTE SENSING, 2024, 16 (03)
  • [50] Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms
    Cui, Jiawei
    Chen, Xiangwei
    Han, Wenting
    Cui, Xin
    Ma, Weitong
    Li, Guang
    REMOTE SENSING, 2023, 15 (21)