Quantifying differences in the epidemic curves from three influenza surveillance systems: a nonlinear regression analysis

被引:5
作者
Thomas, E. G. [1 ]
McCaw, J. M. [1 ,2 ]
Kelly, H. A. [3 ,4 ]
Grant, K. A. [3 ]
McVernon, J. [1 ,2 ]
机构
[1] Univ Melbourne, Ctr Biostat & Epidemiol, Melbourne Sch Populat & Global Hlth, Melbourne, Vic 3010, Australia
[2] Murdoch Childrens Res Inst, Vaccine & Immunisat Res Grp, Parkville, Vic, Australia
[3] Victorian Infect Dis Reference Lab, Epidemiol Unit, Melbourne, Vic, Australia
[4] Australian Natl Univ, Natl Ctr Epidemiol & Populat Hlth, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
Influenza; spatial; surveillance; surveillance system; PANDEMIC INFLUENZA; AUSTRALIA;
D O I
10.1017/S0950268814000764
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Influenza surveillance enables systematic collection of data on spatially and demographically heterogeneous epidemics. Different data collection mechanisms record different aspects of the underlying epidemic with varying bias and noise. We aimed to characterize key differences in weekly incidence data from three influenza surveillance systems in Melbourne, Australia, from 2009 to 2012: laboratory-confirmed influenza notified to the Victorian Department of Health, influenza-like illness (ILI) reported through the Victorian General Practice Sentinel Surveillance scheme, and ILI cases presenting to the Melbourne Medical Deputising Service. Using nonlinear regression, we found that after adjusting for the effects of geographical region and age group, characteristics of the epidemic curve (including season length, timing of peak incidence and constant baseline activity) varied across the systems. We conclude that unmeasured factors endogenous to each surveillance system cause differences in the disease patterns recorded. Future research, particularly data synthesis studies, could benefit from accounting for these differences.
引用
收藏
页码:427 / 439
页数:13
相关论文
共 27 条
[1]  
[Anonymous], 2009, Influenza (Seasonal)
[2]  
Australian Bureau of Statistics, 2010, ABS PUBL, V1
[3]  
Australian Bureau of Statistics. Regional population growth Australia, 2012, ABS PUBL
[4]  
Australian Government Department of Health and Ageing, 2011, REV AUSTR HLTH SECT
[5]   Patterns of early transmission of pandemic influenza in London - link with deprivation [J].
Balasegaram, Sooria ;
Ogilvie, Flora ;
Glasswell, Amy ;
Anderson, Charlotte ;
Cleary, Vivien ;
Turbitt, Deborah ;
McCloskey, Brian .
INFLUENZA AND OTHER RESPIRATORY VIRUSES, 2012, 6 (03) :e35-e41
[6]   Geographic representativeness for sentinel influenza surveillance: implications for routine surveillance and pandemic preparedness [J].
Clothier, Hazel ;
Turner, Joy ;
Hampson, Alan ;
Kelly, Heath .
AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, 2006, 30 (04) :337-341
[7]  
Clothier HJ, 2006, COMMUN DIS INTELL, V30, P345
[8]   Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study [J].
Dawood, Fatimah S. ;
Iuliano, A. Danielle ;
Reed, Carrie ;
Meltzer, Martin I. ;
Shay, David K. ;
Cheng, Po-Yung ;
Bandaranayake, Don ;
Breiman, Robert F. ;
Brooks, W. Abdullah ;
Buchy, Philippe ;
Feikin, Daniel R. ;
Fowler, Karen B. ;
Gordon, Aubree ;
Nguyen Tran Hien ;
Horby, Peter ;
Huang, Q. Sue ;
Katz, Mark A. ;
Krishnan, Anand ;
Lal, Renu ;
Montgomery, Joel M. ;
Molbak, Kare ;
Pebody, Richard ;
Presanis, Anne M. ;
Razuri, Hugo ;
Steens, Anneke ;
Tinoco, Yeny O. ;
Wallinga, Jacco ;
Yu, Hongjie ;
Vong, Sirenda ;
Bresee, Joseph ;
Widdowson, Marc-Alain .
LANCET INFECTIOUS DISEASES, 2012, 12 (09) :687-695
[9]  
Fielding JE, 2009, EUROSURVEILLANCE, V14, P37
[10]  
Grant KA, 2012, VICTORIAN INFECT DIS, V15, P49