Mesopore-rich badam-shell biochar for efficient adsorption of Cr(VI) from aqueous solution

被引:50
|
作者
Jia, Xiuxiu [1 ]
Zhang, Yunqiu [1 ]
He, Zhuang [1 ]
Chang, Fengqin [1 ]
Zhang, Hucai [1 ]
Wagberg, Thomas [2 ]
Hu, Guangzhi [1 ]
机构
[1] Yunnan Univ, Sch Ecol & Environm Sci, Inst Ecol Res & Pollut Control Plateau Lakes, Kunming 650504, Yunnan, Peoples R China
[2] Umea Univ, Dept Phys, S-90187 Umea, Sweden
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2021年 / 9卷 / 04期
基金
国家重点研发计划;
关键词
Badam-shell biochar; Concentrated phosphoric acid activation; Cr(VI); Adsorption; Reduction; Partition coefficient; HEXAVALENT CHROMIUM; MAGNETIC BIOCHAR; CR VI; ACTIVATED CARBONS; BISPHENOL-A; REMOVAL; REDUCTION; PERFORMANCE; WATER; ACID;
D O I
10.1016/j.jece.2021.105634
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cr(VI) is a common pollutant in wastewater and many previous studies using biochar-based materials as adsorbents for their well adsorption performance. However, the preparations of some biochars are complex, uneconomical, and with a poor reusability, which set limit on their practical application. Here, a mesoporous-rich biochar-based Cr(VI) adsorbent was easily prepared by pyrolyzing the badam-shell that in situ activated by concentrated phosphoric acid (H3PO4), with the aim of improving the removal effect of Cr(VI) in an aqueous solution. The partition coefficient (PC) was used to compare the performance of adsorbents more comprehensively, and the maximal PC value of the activated badam-shell biochar (ABSB) was 978.8 L g(-1). In addition, its maximum adsorption capacity was 276.6 mg g(-1). ABSB has a superior removal effect on the relatively low concentration of Cr(VI) (<= 50 mg L-1), and residual Cr(VI) can meet the maximum emission standard (< 0.5 mg L-1) of industrial wastewater. The specific surface area of ABSB (1359.5 m(2) g(-1)) was approximately four times that of pristine badam-shell biochar (BSB) (371.87 m(2) g(-1)). The adsorption mechanisms involved were redox, complexation, electrostatic attraction and hydrogen bonding. The removal rate of Cr(VI) on ABSB remained at 81.6% after six cycles of adsorption-desorption. In a word, our study provides a simple, economic, and environmental method in fabricating the new adsorbent, which is highly promising and will not cause secondary pollution.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution
    Liang, Sha
    Shi, Shunquan
    Zhang, Haohao
    Qiu, Jingjing
    Yu, Wenhao
    Li, Mingyang
    Gan, Quan
    Yu, Wenbo
    Xiao, Keke
    Liu, Bingchuan
    Hu, Jingping
    Hou, Huijie
    Yang, Jiakuan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 695
  • [2] Adsorption of Cr(VI) from Aqueous Solution by Biochar-clay Derived from Clay and Peanut Shell
    Wang Hai
    Yang Ningcan
    Qiu Muqing
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (03) : 301 - 308
  • [3] Pyrolysis co-activation synthesized magnetic biochar for efficient removal of Cr(VI) from aqueous solution
    Jiao, Yazhou
    Xu, Qi
    Hu, Yunxia
    Wu, Jinxiong
    Su, Xintai
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 295
  • [4] Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride
    Chen, Huan
    Yan, Tingting
    Jiang, Fang
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (04) : 1842 - 1849
  • [5] Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar
    Wang, Hong
    Tian, Zhuangzhuang
    Jiang, Ling
    Luo, Wenwen
    Wei, Zhenggui
    Li, Shiyin
    Cui, Jing
    Wei, Wei
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2017, 38 (06) : 815 - 825
  • [6] Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell
    Hoang, Le Phuong
    Nguyen, Thi Minh Phuong
    Van, Huu Tap
    Hoang, Thi Kim Dung
    Vu, Xuan Hoa
    Nguyen, Tien Vinh
    Ca, N. X.
    WATER AIR AND SOIL POLLUTION, 2020, 231 (01)
  • [7] Adsorption of Cr (VI) from Aqueous Solution with nano ß-FeOOH
    Xu, Chunhua
    Cheng, Dandan
    Yue, Qinyan
    Yin, Zhilei
    Gao, Baoyu
    Zhao, Xian
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [8] Insights into the removal of Cr(VI) by a biochar-iron composite from aqueous solution: Reactivity, kinetics and mechanism
    Yan, Liu
    Dong, Fu-Xin
    Lin, Xi
    Zhou, Xin-Hua
    Kong, Ling-Jun
    Chu, Wei
    Diao, Zeng-Hui
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2021, 24
  • [9] Synchronous removal of Cr(VI) and phosphates by a novel crayfish shell biochar-Fe composite from aqueous solution: Reactivity and mechanism
    Yan, Liu
    Dong, Fu-Xin
    Li, Yu
    Guo, Peng-Ran
    Kong, Ling-Jun
    Chu, Wei
    Diao, Zeng-Hui
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):
  • [10] ADSORPTION OF Cr(VI) FROM AQUEOUS SOLUTION USING CARBON-MICROSILICA COMPOSITE ADSORBENT
    Zhang, Deyi
    Ma, Ying
    Feng, Huixia
    Hao, Yuan
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2012, 57 (01): : 964 - 968