IMPROVED DROUGHT MONITORING METHOD BASED ON MULTISOURCE REMOTE SENSING DATA

被引:2
作者
Wang, Zhengdong [1 ,2 ,3 ]
Guo, Peng [1 ]
Wan, Hong [1 ,3 ]
机构
[1] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
drought; FY3B; iTVMDI; remote sensing; Shandong Province;
D O I
10.1109/IGARSS39084.2020.9323442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drought is one of the most common natural disasters which may harm ecosystem and economy, and thus, it is important to accurately grasp the change of drought. In this study, an innovative multisource remote sensing drought index improved Temperature-Vegetation-Soil Moisture Dryness Index (iTVMDI) based on passive microwave remote sensing data of FengYun (FY)3B and optical/infrared data is proposed to monitor the drought in Shandong Province, China in 2016. The monitoring results were verified by meteorological data. Results showed that iTVMDI has a negative correlation (R = - 0.73) with precipitation and the average correlation coefficient with temperature is 0.76. Overall, iTVMDI can be applied to monitor the temporal and spatial variation of drought conditions.
引用
收藏
页码:5282 / 5285
页数:4
相关论文
共 10 条
[1]   Temperature-Vegetation-soil Moisture Dryness Index (TVMDI) [J].
Amani, Meisam ;
Salehi, Bahram ;
Mahdavi, Sahel ;
Masjedi, Ali ;
Dehnavi, Sahar .
REMOTE SENSING OF ENVIRONMENT, 2017, 197 :1-14
[2]   Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales [J].
Joiner, Joanna ;
Yoshida, Yasuko ;
Anderson, Martha ;
Holmes, Thomas ;
Hain, Christopher ;
Reichle, Rolf ;
Koster, Randal ;
Middleton, Elizabeth ;
Zeng, Fan-Wei .
REMOTE SENSING OF ENVIRONMENT, 2018, 219 :339-352
[3]  
Liu Y., 2000, REMOTE SENSING
[4]   Integration of Microwave and Optical/Infrared Derived Datasets for a Drought Hazard Inventory in a Sub-Tropical Region of India [J].
Pandey, Varsha ;
Srivastava, Prashant K. .
REMOTE SENSING, 2019, 11 (04)
[5]   Monitoring the vegetation activity in China using vegetation health indices [J].
Pei, Fengsong ;
Wu, Changjiang ;
Liu, Xiaoping ;
Li, Xia ;
Yang, Kuiqi ;
Zhou, Yi ;
Wang, Kun ;
Xu, Li ;
Xia, Gengrui .
AGRICULTURAL AND FOREST METEOROLOGY, 2018, 248 :215-227
[6]   Spatial Downscaling of Satellite Soil Moisture Data Using a Vegetation Temperature Condition Index [J].
Peng, Jian ;
Loew, Alexander ;
Zhang, Shiqiang ;
Wang, Jie ;
Niesel, Jonathan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01) :558-566
[7]   Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data [J].
Piles, Maria ;
Camps, Adriano ;
Vall-Llossera, Merce ;
Corbella, Ignasi ;
Panciera, Rocco ;
Ruediger, Christoph ;
Kerr, Yann H. ;
Walker, Jeffrey .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (09) :3156-3166
[8]   A MODIFIED SOIL ADJUSTED VEGETATION INDEX [J].
QI, J ;
CHEHBOUNI, A ;
HUETE, AR ;
KERR, YH ;
SOROOSHIAN, S .
REMOTE SENSING OF ENVIRONMENT, 1994, 48 (02) :119-126
[9]   Comparison of Drought Probability Assessments Based on Atmospheric Water Deficit and Soil Water Deficit [J].
Torres, Guilherme M. ;
Lollato, Romulo P. ;
Ochsner, Tyson E. .
AGRONOMY JOURNAL, 2013, 105 (02) :428-436
[10]   Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data [J].
Zhang, Anzhi ;
Jia, Gensuo .
REMOTE SENSING OF ENVIRONMENT, 2013, 134 :12-23