Pointwise optimality of Bayesian wave let estimators

被引:4
作者
Abramovich, Felix [1 ]
Angelini, Claudia
De Canditiis, Dalliela
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
[2] CNR, Ist Applicaz Calcolo, I-80131 Naples, Italy
[3] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
关键词
Bayes factor; Bayes model; bayesan paradox; besov spaces; minimak rates; nonparametric regression; postetrior median; point estitmation; posterior mean; wavelets;
D O I
10.1007/s10463-006-0071-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider pointwise mean squared errors of several known Bayesian wavelet estimators, namely, posterior mean, posterior median and Bayes Factor, where the prior imposed on wavelet coefficients is a mixture of an atom of probability zero and a Gaussian density. We show that for the properly chosen hyperparameters of the prior, all the three estimators are(up to a log-factor) asymptotically minimax within any prescribed Besov ball B-p,q(s)(M). We discus's the Bayesian paradox and compare the results for the pointwise squared risk with those for the global mean squared error.
引用
收藏
页码:425 / 434
页数:10
相关论文
共 21 条
  • [1] Wavelet thresholding via a Bayesian approach
    Abramovich, F
    Sapatinas, T
    Silverman, BW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 725 - 749
  • [2] On optimality of Bayesian wavelet estimators
    Abramovich, F
    Amato, U
    Angelini, C
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (02) : 217 - 234
  • [3] Wavelet analysis and its statistical applications
    Abramovich, F
    Bailey, TC
    Sapatinas, T
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2000, 49 : 1 - 29
  • [4] ABRAMOVICH F, 1999, LECT NOTES STAT, V141, P33
  • [5] [Anonymous], 1993, Ten Lectures of Wavelets
  • [6] Antoniadis A., 1997, J ITALIAN STAT ASS, V6, P97, DOI DOI 10.1007/BF03178905
  • [7] Antoniadis A., 2001, J STAT SOFTW, V6, P1, DOI [10.18637/jss.v006.i06, DOI 10.18637/JSS.V006.I06]
  • [8] CAI T, 2006, IN PRESS BERNOULLI
  • [9] Cai TT, 2003, STAT SINICA, V13, P881
  • [10] Adaptive Bayesian wavelet shrinkage
    Chipman, HA
    Kolaczyk, ED
    McCullogh, RE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1413 - 1421