Active Q control in tuning-fork-based atomic force microscopy

被引:24
作者
Jahng, Junghoon
Lee, Manhee
Noh, Hanheol
Seo, Yongho
Jhe, Wonho [1 ]
机构
[1] Seoul Natl Univ, Dept Physiol & Anat, Seoul 151747, South Korea
[2] Sejong Univ, Inst Fundamental Phys, Dept Nanotechnol, Seoul, South Korea
关键词
CANTILEVERS; RESOLUTION;
D O I
10.1063/1.2753112
中图分类号
O59 [应用物理学];
学科分类号
摘要
The authors present comprehensive theoretical analysis and experimental realization of active Q control for the self-oscillating quartz tuning fork (TF). It is shown that the quality factor Q can be increased (decreased) by adding the signal of any phase lag, with respect to the drive signal, in the range of theta(1) to theta(1)+pi (theta(1)+pi to theta(1)+2 pi), where theta(1) is the characteristic constant of TF. Experimentally, the nominal Q value of 4.7x10(3) is decreased to 1.8x10(3) or increased to 5.0x10(4) in ambient condition, where the minimum detectable force is estimated to be 4.9x10(-14) N at 1 Hz. The novel Q control scheme demonstrated in the widely used quartz TF is expected to contribute much to scanning probe microscopy of, in particular, soft and biological materials. (C) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Control of the higher eigenmodes of a microcantilever: Applications in atomic force microscopy
    Karvinen, K. S.
    Moheimani, S. O. R.
    ULTRAMICROSCOPY, 2014, 137 : 66 - 71
  • [32] Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning
    Kilpatrick, J. I.
    Gannepalli, A.
    Cleveland, J. P.
    Jarvis, S. P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (02)
  • [33] Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy
    Walder, Robert
    Van Patten, William J.
    Adhikari, Ayush
    Perkins, Thomas T.
    ACS NANO, 2018, 12 (01) : 198 - 207
  • [34] Direct Differential Optical Detection of the Oscillation Amplitude of Tuning Forks for Atomic Force Microscopy
    Kim, J.
    Han, Y.
    Moon, K.
    Jung, E.
    Han, H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (04) : 1738 - 1741
  • [35] Accurate Electrostatic Force Measurements by Atomic Force Microscopy Using Proper Distance Control
    Fukuzawa, Ryota
    Kobayashi, Daichi
    Takahashi, Takuji
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Multi-Mode Resonant Control of a Microcantilever for Atomic Force Microscopy
    Ruppert, Michael G.
    Fairbairn, Matthew W.
    Moheimani, S. O. Reza
    2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 77 - 82
  • [37] A novel control design for high-speed Atomic Force Microscopy
    Gorugantu, Ram Sai
    Salapaka, Srinivasa M.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 692 - 697
  • [38] Nonlinear dynamics and control of the scan process in noncontacting atomic force microscopy
    Hornstein, S.
    Gottlieb, O.
    Ioffe, L.
    PROCEEDINGS OF THE ASME DESIGN ENGINEERING DIVISION 2005, PTS A AND B, 2005, : 571 - 581
  • [39] Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes
    Senapati, Subhadip
    Poma, Adolfo B.
    Cieplak, Marek
    Filipek, Slawomir
    Park, Paul S. -H.
    ANALYTICAL CHEMISTRY, 2019, 91 (11) : 7226 - 7235
  • [40] Integrated force and displacement sensing in active microcantilevers for off-resonance tapping mode atomic force microscopy
    de Bem, Nata F. S.
    Ruppert, Michael G.
    Yong, Yuen K.
    Fleming, Andrew J.
    2020 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS 2020), 2020, : 24 - +