High powers of Hamiltonian cycles in randomly augmented graphs

被引:8
作者
Antoniuk, Sylwia [1 ]
Dudek, Andrzej [2 ]
Reiher, Christian [3 ]
Rucinski, Andrzej [1 ]
Schacht, Mathias [3 ]
机构
[1] Adam Mickiewicz Univ, Dept Discrete Math, Poznan, Poland
[2] Western Michigan Univ, Dept Math, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
[3] Univ Hamburg, Fachbereich Math, Hamburg, Germany
基金
欧洲研究理事会;
关键词
augmented graphs; powers of Hamilton cycles;
D O I
10.1002/jgt.22691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of powers of Hamiltonian cycles in graphs with large minimum degree to which some additional edges have been added in a random manner. For all integers k > 1 , r > 0, and l > ( r + 1 ) r, and for any alpha > k k + 1 we show that adding O ( n 2 - 2 / l ) random edges to an n-vertex graph G with minimum degree at least alpha n yields, with probability close to one, the existence of the ( k l + r )-th power of a Hamiltonian cycle. In particular, for r = 1 and l = 2 this implies that adding O ( n ) random edges to such a graph G already ensures the ( 2 k + 1 )-st power of a Hamiltonian cycle (proved independently by Nenadov and Trujic). In this instance and for several other choices of k , l, and r we can show that our result is asymptotically optimal.
引用
收藏
页码:255 / 284
页数:30
相关论文
共 14 条
  • [1] H-factors in dense graphs
    Alon, N
    Yuster, R
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) : 269 - 282
  • [2] How many random edges make a dense graph hamiltonian?
    Bohman, T
    Frieze, A
    Martin, R
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (01) : 33 - 42
  • [3] EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS
    Bottcher, Julia
    Montgomery, Richard
    Parczyk, Olaf
    Person, Yury
    [J]. MATHEMATIKA, 2020, 66 (02) : 422 - 447
  • [4] Dirac G.A., 1952, Proc. Lond. Math. Soc., V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [5] Powers of Hamiltonian cycles in randomly augmented graphs
    Dudek, Andrzej
    Reiher, Christian
    Rucinski, Andrzej
    Schacht, Mathias
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (01) : 122 - 141
  • [6] SUPERSATURATED GRAPHS AND HYPERGRAPHS
    ERDOS, P
    SIMONOVITS, M
    [J]. COMBINATORICA, 1983, 3 (02) : 181 - 192
  • [7] ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS
    ERDOS, P
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) : 183 - &
  • [8] Janson S., 2000, WIL INT S D, DOI 10.1002/9781118032718
  • [9] Komlos J, 1998, J GRAPH THEOR, V29, P167, DOI 10.1002/(SICI)1097-0118(199811)29:3<167::AID-JGT4>3.0.CO
  • [10] 2-O