Wald Statistics in high-dimensional PCA

被引:1
作者
Loffler, Matthias [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
PCA; spectral projectors; central limit theorem; confidence sets; goodness of fit tests; SPECTRAL PROJECTORS; PRINCIPAL-COMPONENTS; ASYMPTOTICS; EIGENSTRUCTURE; APPROXIMATION; BOUNDS; TESTS;
D O I
10.1051/ps/2019002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study, we consider PCA for Gaussian observations X-1, horizontal ellipsis , X-n with covariance sigma = n-ary sumation (i)lambda P-i(i) in the 'effective rank' setting with model complexity governed by r(sigma) colon equals tr(sigma)/parallel to sigma parallel to. We prove a Berry-Essen type bound for a Wald Statistic of the spectral projector $\hat P_r$Pr. This can be used to construct non-asymptotic goodness of fit tests and confidence ellipsoids for spectral projectors P-r. Using higher order pertubation theory we are able to show that our Theorem remains valid even when r(Sigma) >> root n.
引用
收藏
页码:662 / 671
页数:10
相关论文
共 25 条
[1]   ASYMPTOTIC CHI-SQUARE TESTS FOR A LARGE CLASS OF FACTOR-ANALYSIS MODELS [J].
AMEMIYA, Y ;
ANDERSON, TW .
ANNALS OF STATISTICS, 1990, 18 (03) :1453-1463
[2]   ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01) :122-&
[3]  
Bentler PM, 1994, INST MATH S, V24, P123, DOI 10.1214/lnms/1215463790
[4]   OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS IN HIGH DIMENSION [J].
Berthet, Quentin ;
Rigollet, Philippe .
ANNALS OF STATISTICS, 2013, 41 (04) :1780-1815
[5]   SPARSE PCA: OPTIMAL RATES AND ADAPTIVE ESTIMATION [J].
Cai, T. Tony ;
Ma, Zongming ;
Wu, Yihong .
ANNALS OF STATISTICS, 2013, 41 (06) :3074-3110
[6]  
Eaton M., 1983, Multivariate statistics: a vector space approach
[7]   RATE-OPTIMAL POSTERIOR CONTRACTION FOR SPARSE PCA [J].
Gao, Chao ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2015, 43 (02) :785-818
[8]  
Johnstone IM, 2009, J AM STAT ASSOC, V104, P682, DOI 10.1198/jasa.2009.0121
[9]   On the distribution of the largest eigenvalue in principal components analysis [J].
Johnstone, IM .
ANNALS OF STATISTICS, 2001, 29 (02) :295-327
[10]  
Koltchinskii V., 2017, ARXIV170807642