On the total external length of the Kingman coalescent

被引:21
作者
Janson, Svante [1 ]
Kersting, Goetz [2 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Goethe Univ Frankfurt, Fachbereich Informat & Math, D-60054 Frankfurt, Germany
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2011年 / 16卷
关键词
coalescent; external branch; reversibility; urn model;
D O I
10.1214/EJP.v16-955
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we prove asymptotic normality of the total length of external branches in Kingman's coalescent. The proof uses an embedded Markov chain, which can be described as follows: Take an urn with n black balls. Empty it in n steps according to the rule: In each step remove a randomly chosen pair of balls and replace it by one red ball. Finally remove the last remaining ball. Then the numbers U-k, 0 <= k <= n, of red balls after k steps exhibit an unexpected property: (U-0, ... , U-n) and (U-n, ... , U-0) are equal in distribution.
引用
收藏
页码:2203 / 2218
页数:16
相关论文
共 15 条