Tunable Work Function of MgxZn1-xO as a Viable Friction Material for a Triboelectric Nanogenerator

被引:43
作者
Guo, Qi-Zhen [1 ]
Yang, Liang-Ciao [1 ]
Wang, Ruey-Chi [3 ]
Liu, Chuan-Pu [1 ,2 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 701, Taiwan
[3] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung 811, Taiwan
关键词
triboelectric nanogenerator; MgxZn1-xO; ZnO; work function; thickness effect; surface facet; ENERGY; VIBRATION; OPTIMIZATION; GENERATOR;
D O I
10.1021/acsami.8b17416
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Since the invention of triboelectric nanogenerators (TENGs), their output performance has been improved through various approaches such as material surface modification, device structure optimization, and so on, but rarely through the development of new friction materials. In this work, a magnetron sputtered MgxZn1-xO film is developed as a viable friction material that rubs against polydimethylsiloxane in a TENG. The work function, measured by Kelvin probe microscopy, of the MgxZn1-xO films can be effectively tuned by varying Mg composition, x, and exposed surface facets, which are shown to dominate the charge-transfer behavior. In addition, film thickness also plays an important role, affecting the output performance. The output voltage and total charge of a TENG with a MgxZn1-xO film are demonstrated to be tremendously enhanced by 55 and 90 times, respectively, compared to that of a TENG with a ZnO film. Even more intriguingly, the tribo-output polarity can be reversed by adjusting the relative work function through varying the preferred growth orientation of the MgxZn1-xO film, for a given value of Mg content.
引用
收藏
页码:1420 / 1425
页数:6
相关论文
共 27 条
[1]   Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air [J].
Abdellatif, M. H. ;
Salerno, M. ;
Polovitsyn, Anatolii ;
Marras, Sergio ;
De Angelis, Francesco .
APPLIED SURFACE SCIENCE, 2017, 403 :371-377
[2]   Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction [J].
Arroyo, E. ;
Badel, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 171 (02) :266-273
[3]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[4]   Au nanocomposite enhanced electret film for triboelectric nanogenerator [J].
Chen, Bao Dong ;
Tang, Wei ;
Zhang, Chi ;
Xu, Liang ;
Zhu, Lai Pan ;
Yang, Lei Jing ;
He, Chuan ;
Chen, Jian ;
Liu, Long ;
Zhou, Tao ;
Wang, Zhong Lin .
NANO RESEARCH, 2018, 11 (06) :3096-3105
[5]   A multi-frequency sandwich type electromagnetic vibration energy harvester [J].
Chen, Jingdong ;
Chen, Di ;
Yuan, Tao ;
Chen, Xiang .
APPLIED PHYSICS LETTERS, 2012, 100 (21)
[6]   Boosted output performance of triboelectric nanogenerator via electric double layer effect [J].
Chun, Jinsung ;
Ye, Byeong Uk ;
Lee, Jae Won ;
Choi, Dukhyun ;
Kang, Chong-Yun ;
Kim, Sang-Woo ;
Wang, Zhong Lin ;
Baik, Jeong Min .
NATURE COMMUNICATIONS, 2016, 7
[7]   Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator [J].
Cui, Nuanyang ;
Gu, Long ;
Lei, Yimin ;
Liu, Jinmei ;
Qin, Yong ;
Ma, Xiaohua ;
Hao, Yue ;
Wang, Zhong Lin .
ACS NANO, 2016, 10 (06) :6131-6138
[8]   A Three Dimensional Multi-Layered Sliding Triboelectric Nanogenerator [J].
Du, Weiming ;
Han, Xun ;
Lin, Long ;
Chen, Mengxiao ;
Li, Xiaoyi ;
Pan, Caofeng ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2014, 4 (11)
[9]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[10]   ELECTRONEGATIVITY OF GROUPS [J].
HUHEEY, JE .
JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (10) :3284-&