Associated primes of local cohomology modules and Matlis duality

被引:17
作者
Bahmanpour, Kamal [1 ,2 ,3 ]
Naghipour, Reza [1 ,3 ]
机构
[1] Inst Studies Theoret Phys & Math, Sch Math, Tehran, Iran
[2] Islamic Azad Univ, Ardebil Branch, Dept Math, Ardebil 5614633167, Iran
[3] Univ Tabriz, Dept Math, Tabriz 5166616471, Iran
关键词
associated primes; cofinite module; cohomological dimension; local cohomology; Matlis duality; regular local ring;
D O I
10.1016/j.jalgebra.2008.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a commutative Noetherian local ring of dimension d and I an ideal of R. We show that the set of associated primes of the local cohomology module H(l)(2)(R) is finite whenever R is regular. Also, it is shown that if X(l),...,x(d) is a system of parameters for R, then D(H((x,...,xi))(i)(R)) has infinitely many associated prime ideals for all i <= d-1, where D(-) := HOM(R)(-, E) denotes the Matlis dual functor and E := E(R)(R/m) is the injective hull of the residue field R/m. Finally, we explore a counterexample of Grothendieck's conjecture by showing that, if d >= 3, then the R-module HOM(R) (R/I, H(l)(d-1)(R)) is not finitely generated, where I = (x(l)) boolean AND (x(2),...,x(d)). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2632 / 2641
页数:10
相关论文
共 17 条
[1]  
Brodmann M., 1998, LOCAL COHOMOLOGY ALG
[2]   Cofinite modules and local cohomology [J].
Delfino, D ;
Marley, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :45-52
[3]  
Grothendieck A., 1966, LECT NOTES MATH, V862
[4]  
Grothendieck A., 1968, Cohomologie local des faisceaux coherents et theoremes de Lefschetz locaux et globaux (SGA2)
[5]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+
[6]   Matlis duals of top local cohomology modules and the arithmetic rank of an ideal [J].
Hellus, Michael .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) :1421-1432
[7]  
HUNEKE C, 1992, RES NOT MAT, V2, P93
[8]   BASS NUMBERS OF LOCAL COHOMOLOGY MODULES [J].
HUNEKE, CL ;
SHARP, RY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :765-779
[9]   An example of an infinite set of associated primes of a local cohomology module [J].
Katzman, M .
JOURNAL OF ALGEBRA, 2002, 252 (01) :161-166
[10]   FINITENESS PROPERTIES OF LOCAL COHOMOLOGY MODULES (AN APPLICATION OF D-MODULES TO COMMUTATIVE ALGEBRA) [J].
LYUBEZNIK, G .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :41-55