Generalized Spatial Modulation based Orthogonal Time Frequency Space System

被引:5
作者
Li, Bingxin [1 ]
Bai, Zhiquan [1 ]
Guo, Jianing [2 ]
Yang, Yingchao [1 ]
Yan, Mengmeng [1 ]
Hao, Xinhong [3 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Shandong Prov Key Lab Wireless Commun Technol, Qingdao 266237, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Dept Elect & Informat, Jinan 250031, Shandong, Peoples R China
[3] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
来源
2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL) | 2021年
关键词
generalized spatial modulation (GSM); orthogonal time frequency space (OTFS); moment generating function (MGF); average bit error rate (ABER); OTFS;
D O I
10.1109/VTC2021-FALL52928.2021.9625452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an orthogonal time frequency space (OTFS) system based on generalized spatial modulation (GSM) is proposed to overcome the high Doppler frequency shift in mobile communication scenarios. The proposed system fully takes the advantages of OTFS and GSM, and can achieve higher spectral efficiency and better bit error rate (BER) performance. The GSM based OTFS (GSM-OTFS) system and its signal processing have been presented first. Furthermore, the theoretical average BER of the GSM-OTFS system is derived with the union bound technique and the moment generating function (MGF). Numerical results show that the theoretical results of average BER performance of the GSM-OTFS scheme match well with the simulation results, which proves the correctness of our theoretical analysis, and the GSM-OTFS system can achieve better BER performance and spectral efficiency compared with the traditional spatial modulation based OTFS (SM-OTFS) system.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 1963, IEEE Trans. Comm. Syst., DOI [10.1109/TCOM.1963.1088793, DOI 10.1109/TCOM.1963.1088793]
[2]   Time Domain Channel Estimation and Equalization of CP-OTFS Under Multiple Fractional Dopplers and Residual Synchronization Errors [J].
Das, Suvra Sekhar ;
Rangamgari, Vivek ;
Tiwari, Shashank ;
Mondal, Subhas Chandra .
IEEE ACCESS, 2021, 9 :10561-10576
[3]   Low Complexity Modem Structure for OFDM-Based Orthogonal Time Frequency Space Modulation [J].
Farhang, Arman ;
RezazadehReyhani, Ahmad ;
Doyle, Linda E. ;
Farhang-Boroujeny, Behrouz .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (03) :344-347
[4]   Precoded Index Modulation for Multi-Input Multi-Output OFDM [J].
Gao, Shijian ;
Zhang, Meng ;
Cheng, Xiang .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (01) :17-28
[5]   Signal Shaping for Generalized Spatial Modulation and Generalized Quadrature Spatial Modulation [J].
Guo, Shuaishuai ;
Zhang, Haixia ;
Zhang, Peng ;
Dang, Shuping ;
Liang, Cong ;
Alouini, Mohamed-Slim .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) :4047-4059
[6]  
Hadani R, 2017, IEEE MTT S INT MICR, P677
[7]  
Hadani R, 2017, IEEE WCNC
[8]   Spatial Modulation for More Spatial Multiplexing: RF-Chain-Limited Generalized Spatial Modulation Aided MM-Wave MIMO With Hybrid Precoding [J].
He, Longzhuang ;
Wang, Jintao ;
Song, Jian .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (03) :986-998
[9]   Spatial modulation: Optimal detection and performance analysis [J].
Jeganathan, Jeyadeepan ;
Ghrayeb, Ali ;
Szczecinski, Leszek .
IEEE COMMUNICATIONS LETTERS, 2008, 12 (08) :545-547
[10]   Optimal Spatial-Domain Design for Spatial Modulation Capacity Maximization [J].
Liu, Chang ;
Ma, Meng ;
Yang, Yuli ;
Jiao, Bingli .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (06) :1092-1095