AuAg/ZnO nanocatalyst for CO2 valorization and H2 and CO electrochemical production

被引:7
|
作者
Sarno, Maria [1 ,2 ]
Ponticorvo, Eleonora [2 ]
Piotto, Stefano [3 ]
Nardiello, Anna Maria [3 ]
De Pasquale, Salvatore [1 ,2 ]
Funicello, Nicola [1 ]
机构
[1] Univ Salerno, Dept Phys ER Caianiello, Via Giovanni Paolo II,132, I-84084 Fisciano, SA, Italy
[2] Univ Salerno, Nano Mates Res Ctr Nanomat & Nanotechnol, Via Giovanni Paolo II,132, I-84084 Fisciano, SA, Italy
[3] Univ Salerno, Dept Pharm, Via Giovanni Paolo II,132, I-84084 Fisciano, SA, Italy
关键词
Carbon dioxide reduction; Nanomaterials; Syngas; AuAg/ZnO; DFT calculation; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; SYNGAS PRODUCTION; AQUEOUS CO2; NANOPARTICLES; METHANOL; TEMPERATURE; ELECTROREDUCTION; ELECTROLYSIS; ELECTRODES;
D O I
10.1016/j.jcou.2020.101179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A controllable composition and morphology AuAg/ZnO catalyst, prepared by an easily scalable method, was, for the first time, explored for the electrocatalytic reduction of CO2. It was found that the composition of the bimetallic alloy contributes to the overall CO2 reduction performance. In particular, as also demonstrated by density functional theory calculations, CO production increases, decreasing the Au content in the catalyst alloy. The experimental investigation reveals that the products are H-2 and CO, which production rate increases in the presence of ZnO, up to a Faradic efficiency of 94.7 % at 0.4 V. On the other hand, controlling the oleic acid covering it is possible to modulate the surface properties allowing to obtain, at 0.6 V, H-2/CO ratios equal to 1.1 and 1.9 for nanocatalysts thermally treated for 2 and 5 h, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Improvement of Catalytic Activity by Nanofibrous CuInS2 for Electrochemical CO2 Reduction
    Aljabour, Abdalaziz
    Apaydin, Dogukan Hazar
    Coskun, Halime
    Ozel, Faruk
    Ersoz, Mustafa
    Stadler, Philipp
    Sariciftci, Niyazi Serdar
    Kus, Mahmut
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (46) : 31695 - 31701
  • [22] Enhancing CO and H2 Production in Propane Dry Reforming in Excess of CO2
    Al-Shafei, Emad
    Aljishi, Mohammad
    Alasseel, Ahmed
    Al-ShaikhAli, Anaam H.
    Albahar, Mohammed
    ACS OMEGA, 2024,
  • [23] A CO2/H2 fuel cell: reducing CO2 while generating electricity
    Liu, Yan
    Li, Yawei
    Chen, Yuanzhen
    Qu, Ting
    Shu, Chengyong
    Yang, Xiaodong
    Zhu, Haiyan
    Guo, Shengwu
    Zhao, Shengdun
    Asefa, Tewodros
    Liu, Yongning
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (17) : 8329 - 8336
  • [24] Selective conversion of CO2 and H2 into aromatics
    Ni, Youming
    Chen, Zhiyang
    Fu, Yi
    Liu, Yong
    Zhu, Wenliang
    Liu, Zhongmin
    NATURE COMMUNICATIONS, 2018, 9
  • [25] Tandem catalytic methylation of naphthalene using CO2 and H2
    Wang, Zijian
    Chang, Haohao
    Zhang, Jiang
    Sun, Zehui
    Wu, Yulin
    Liu, Yongmei
    Zhu, Yifeng
    He, Heyong
    Cao, Yong
    Bao, Xinhe
    CHEMICAL COMMUNICATIONS, 2022, 58 (23) : 3779 - 3782
  • [26] CO, CO2 and H2 adsorption on ZnO, CeO2, and ZnO/CeO2 surfaces: DFT simulations
    Reimers, Walter G.
    Baltanas, Miguel A.
    Branda, Maria M.
    JOURNAL OF MOLECULAR MODELING, 2014, 20 (06)
  • [27] Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures
    Hiragond, Chaitanya B.
    Kim, Hwapyong
    Lee, Junho
    Sorcar, Saurav
    Erkey, Can
    In, Su-Il
    CATALYSTS, 2020, 10 (01)
  • [28] CO, CO2 and H2 adsorption on ZnO, CeO2, and ZnO/CeO2 surfaces: DFT simulations
    Walter G. Reimers
    Miguel A. Baltanás
    María M. Branda
    Journal of Molecular Modeling, 2014, 20
  • [29] Sustainable Production of Dialkoxymethane Ethers and Related Acetals Using CO2, H2 and Alcohols or Diols
    Adam, Rosa
    Cabrero-Antonino, Jose R.
    CHEMCATCHEM, 2024, 16 (21)
  • [30] AgIn dendrite catalysts for electrochemical reduction of CO2 to CO
    Park, Hyanjoo
    Choi, Jihui
    Kim, Hoyoung
    Hwang, Eunkyoung
    Ha, Don-Hyung
    Ahn, Sang Hyun
    Kim, Soo-Kil
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 219 : 123 - 131