The N-wave equations with PT symmetry

被引:36
作者
Gerdjikov, V. S. [1 ]
Grahovski, G. G. [1 ,2 ]
Ivanov, R. I. [3 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
[2] Univ Essex, Dept Math Sci, Colchester, Essex, England
[3] Dublin Inst Technol, Sch Math Sci, Dublin, Ireland
关键词
integrable system; PT symmetry; inverse scattering transform; soliton solution; INVERSE SCATTERING TRANSFORM; BEALS-COIFMAN SYSTEM; SIMPLE LIE-ALGEBRAS; 3-WAVE INTERACTION; PSEUDO-HERMITICITY; PT-SYMMETRY; REDUCTIONS; SOLITONS; OPTICS;
D O I
10.1134/S0040577916090038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study extensions of N-wave systems with PT symmetry and describe the types of (nonlocal) reductions leading to integrable equations invariant under the P (spatial reflection) and T (time reversal) symmetries. We derive the corresponding constraints on the fundamental analytic solutions and the scattering data. Based on examples of three-wave and four-wave systems (related to the respective algebras sl(3,C) and so(5,C)), we discuss the properties of different types of one- and two-soliton solutions. We show that the PT-symmetric three-wave equations can have regular multisoliton solutions for some specific choices of their parameters.
引用
收藏
页码:1305 / 1321
页数:17
相关论文
共 50 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[4]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[5]   SOLITONS AND 4-WAVE-MIXING [J].
ACKERHALT, JR ;
MILONNI, PW .
PHYSICAL REVIEW A, 1986, 33 (05) :3185-3198
[6]  
[Anonymous], 1980, Theory of Solitons. Inverse Problem Method
[7]   Dimer with gain and loss: Integrability and PT-symmetry restoration [J].
Barashenkov, I. V. ;
Pelinovsky, D. E. ;
Dubard, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (32)
[8]   Hamiltonian formulation of the standard PT-symmetric nonlinear Schrodinger dimer [J].
Barashenkov, I. V. .
PHYSICAL REVIEW A, 2014, 90 (04)
[9]   SCATTERING AND INVERSE SCATTERING FOR 1ST-ORDER SYSTEMS .2. [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1987, 3 (04) :577-593
[10]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018